ABSTRACT The government generates terabytes of data directly and incidentally in the operation of public programs. For intrinsic and instrumental reasons, these data should be made open to the public. Intrinsically, a right to government data is implicit in the right to information. Instrumentally, open government data will improve policy, increase accountability, empower citizens, create new opportunities for private firms, and lead to development and economic growth. A series of case studies demonstrates these benefits in a range of other contexts. We next examine how government can maximize social benefit from government data. This entails opening administrative data as far upstream in the data pipeline as possible. Most administrative data can be minimally aggregated to protect privacy, while providing data with high geographic granularity. We assess the status quo of the Government of India’s data production and dissemination pipeline, and find that the greatest weakness lies in the last mile: making government data accessible to the public. This means more than posting it online; we describe a set of principles for lowering the access and use costs close to zero. Finally, we examine the use of government data to guide policy in the COVID-19 pandemic. Civil society played a key role in aggregating, disseminating, and analyzing government data, providing analysis that

* sasher@jhu.edu (Corresponding author)
† bhowmick@devdatalab.org
‡ acampion@devdatalab.org
†† lunt@devdatalab.org
** paul.novosad@dartmouth.edu
§ The authors are grateful to Poonam Gupta, Karthik Muralidharan, and Shekhar Shah for the invitation to write this paper. They thank Raj Chetty, Bob Cull, Ricardo Dahis, Joel Gurin, Daniel Mahler, P.C. Mohanan, Nachiket Mor, Malavika Raghavan, Ajay Shah, Rukmini S., eGov foundation, and the Development Monitoring and Evaluation Office at NITI Aayog for their guidance and feedback. This paper grew out of many years of research using government data in India, supported by many mentors, friends, and donors too numerous to name individually.
was essential to policy response. However, key pieces of data, like testing rates and sero-prevalence distribution, were unnecessarily withheld by the government, data which could have substantially improved the policy response. A more open approach to government data would have saved many lives.

Keywords: Open Data, Governance, India, Economic Growth, Public Goods Provision

JEL Classification: C8, I15, I25, O1, R11

1. **Introduction**

In 1881, the first recognizably modern census was conducted in India, covering both British India and the princely states, with the exception of Kashmir and areas controlled by other European powers. Over a two-month period from December 1880 to February 1881, a standard twelve-question survey was asked of every one of the 253,982,595 inhabitants of the subcontinent, the results of which were published in dozens of volumes that provided detailed descriptions and tabular data on the demographic, economic, linguistic, religious, educational, and geographic characteristics of India’s massive population. More than half a million enumerators traveled to 714,707 villages and towns. They faced problems ranging from logistical challenges accessing mountainous and forested regions, to concerns that the census was preparation for a major forced displacement or recruitment for war. In some parts, enumerators were preceded by rumors that they would bring bad luck or injury, motivating people to respond behind closed doors or hide in family members’ houses when enumerators were present. In others, the questions about age and marital status were entertained and said to cause “much amusement” (Plowden 1883).

Today, more data is generated by the Government of India in a single day than in the entire Census of 1881. Every payment in the Mahatma Gandhi National Rural Employment Guarantee Scheme (MGNREGS), every health insurance claim under Pradhan Mantri Jan Arogya Yojana (PMJAY), and minute details of every rural road constructed under Pradhan Mantri Gram Sadak Yojana (PMGSY) are recorded and stored across a sprawling network of disparate databases. Some of these data are analyzed to inform policy, and some are released publicly for use by a wide range of actors across government, civil society, and the private sector. But the vast majority sits idle in virtual warehouses, behind restricted logins and arcane websites, inaccessible even to those within government who could use them for the public good. This paper lays out a vision for setting those data free, to power India’s development through better policy design, greater accountability, and more efficient markets.

India is in many ways already a leader in the broad field of data for development. The Indian Statistical and Economic Services constitute a deep pool of expertise in the collection and use of data. The Population Census, National
Sample Survey (NSS), and Annual Survey of Industries (ASI) are among the many rich data sources that have been collected for decades. In contrast to many other developing countries, most government programs in India have management and information systems that record detailed administrative microdata. A wide assortment of government websites make data available to the public, like data.gov.in, microdata.gov.in, and ecourts.gov.in, to name a few. Indeed, the World Bank’s Statistical Performance Indicators, which rate countries on the availability, quality, and usability of their government data, rank India the 14th best in the world globally, adjusting for income. India’s world class technology sector has helped to build much of the public data infrastructure and finds myriad ways to generate economic growth from government data. A vibrant civil society, ranging from academic researchers to watchdog non-governmental organizations (NGOs) and a free press, uses government data to improve the understanding of India’s economy, evaluate policies, and advocate for better governance.

All this notwithstanding, India’s Government is hampering growth and development through poor service delivery in the realm of government data. Just as India’s economic growth and poverty alleviation would be enhanced if a high level of education were accessible to the entire population, so would development be accelerated by more widespread access to government data. Currently, much of the data generated by the government is either not released or is put out in a way that makes it impossible to use effectively. Resources are wasted recreating imperfect copies of databases that ministries operate but only partially release through their websites. Data collected at the village and neighborhood levels are often released only as State-level aggregates which have limited value for decision-making.

In this paper, we present a vision for the use and dissemination of public data that can unlock far more of its potential, based on four principles, as discussed below:

1. **Government data should be free.** Borrowing terminology from the open source software movement, it should first be “free” in that access should be unrestricted except to prevent harm. Data belongs to the people of India, not to their government. Second, data should also be “free” in that the cost of accessing it should be zero, not only in terms of monetary costs, but in terms of all other costs: search, cleaning, harmonizing, among others. Too many of India’s “public” datasets are, for all practical purposes, not in fact accessible at scale, with data stuck behind web portals with attractive layouts but minimal data access.

2. **The Government’s primary role in the data pipeline is to generate and disseminate data.** India’s vibrant civil society and private sectors have repeatedly demonstrated that they have the capability to generate original insights and add value to government-generated data. Making government data open can thus benefit society both directly and indirectly by improving government policymaking and accountability. The government needs
capacity to conduct its own analyses, but this should never crowd out the
delivery of data to those outside the halls of power.

3. **Data production requires clear quality standards.** Data quality is essential for its effective use. There currently exist many sensible standards for the production of government data, but implementation of these standards can be much improved. Concerns over the quality of data are legitimate but should not prevent the opening of data to the public: openness contributes to data quality through scrutiny.

4. **Data must be delivered effectively to maximize its social value and prevent abuse.** If posted data is inaccessible to users, it is not open in practical terms. For non-sensitive data, citizens should have unrestricted access to raw data, via APIs and other mechanisms, which enable all members of society to use it for their myriad purposes. For sensitive data, minimal geographic aggregation can protect privacy while maintaining usefulness. Protocols for accessing personally identifiable information, following well-established international guidelines, can allow researchers and others pursuing the common good to use such data without risking harm through privacy violation.

This paper explains why virtually all government data should be open, and how to go about the process of delivering that open data to all of India. It contains many proposals on how to maximize the value of data to Indian society while respecting the hard constraint of privacy protection. However, this paper is not a manual of the exact regulations that would accomplish such a goal. We do not pretend to examine every possible privacy risk or technical challenge; rather, we seek to show how a broad consensus is possible around opening much of the government’s data, even as the debates rightly continue on how to respect privacy and prevent abuse.

Two broad themes run through our argument. The first is that given the investments already made in the generation and dissemination of data, achieving this vision entails high returns but a relatively low marginal cost. The second is that public access to data is valuable because its potential uses are so varied. It is impossible for public officials (or anyone else) to anticipate the myriad uses to which the data generated by their programs may be put to use. Many billion dollar “unicorns” in Silicon Valley are built upon a foundation of free access to data on real estate, geospatial information, satellite imagery, and other standardized data layers; their Indian equivalents are far behind not because of a lack of talent or skills, but because of lack of access to data, the raw material of the information sector. Once it has generated the data, the government can maximize social welfare by delivering it to the entire society at zero cost, monetary or otherwise.

Government data should be open by default and restricted only where there is a clear case in doing so for the public interest. Indeed, the Indian Government already has a commitment to share its internal data with the public through the Right to Information (RTI) and various open data policies. But the RTI
mechanism implies access restriction by default: only through significant work
can the public obtain data that was collected from them, and even then, not
always. A more complete right to information would require that government
data is open, usable, and available even without requiring a heroic effort by
the public to unlock it. In 2021, there is no technological or other constraint on
making the entirety of non-sensitive government data open and easily accessible.

This paper proceeds by describing the principles behind wider access to
government data and demonstrating some of the potential benefits through a
series of case studies describing downstream effects of open data from around
the world (Section 2). We then elucidate how the government should change its
data production pipeline such that it is no longer the chief bottleneck in access to
public data (Section 3). In Section 4, we outline the key steps required to improve
the quality of government data and argue that appropriate concerns about data
quality are no reason to keep data from the public. We discuss in Section 5 how
data dissemination can maximize usability subject to appropriate safeguards by
meeting three standards: frictionless access, appropriate delivery, and concep-
tual clarity. This builds on some of our own work at Development Data Lab in
creating the Socioeconomic High-resolution Rural-Urban Geographic Platform
for India, or SHRUG, a data platform designed explicitly to broaden access to
otherwise inaccessible government data. In Section 6, we assess India’s per-
formance thus far in delivering government data for use by policymakers, civil
society, and the private sector.

Finally in Section 7, we examine the case study of the ongoing COVID-19
crisis in India. We highlight the dynamism of policymakers, researchers, the
open data community, journalists, and businesses, who worked together to use
data to fight the pandemic. We also highlight the tragedy of missed opportuni-
ties caused by a lack of detailed, high-quality, and timely data. More open data
would have enabled governments to better understand the spread of the disease,
to better target non-pharmaceutical interventions, and to better prioritize scarce
resources by age and health conditions. Opening government data can enable
India to be better prepared for the next major crisis.

It is clear to us that India can be the world leader in open data for develop-
ment. Kapur (2020) points out that the Indian state has often excelled in creating
islands of excellence but has struggled with the final mile delivery of services
such as electricity, education, and health. Thanks to the Internet, which transports
data effortlessly across space to anyone with signal and a device, the final mile
of service delivery for data is much shorter than in other domains. Relative to
the huge resources that have gone into the digitization of government, small
investments are required to push virtually all of government data out into the
public domain, where it can be used to improve governance and propel economic
growth. The larger shift required is philosophical: government must recognize
that government data belongs to all the people of India, and as such, it must be
made available at zero cost to anyone who wants to use it, with restrictions only
to prevent harm. A now-common refrain is that data is the new oil, but instead of
fueling economic growth at great cost to bank balances, health, and the environment, data has the potential to drive widespread development in India through better governance and more efficient markets, but only if it is truly set free.

2. Set Government Data Free

This section describes some of the many benefits that can arise from the creation of a more open ecosystem around government data in India. We argue that increasing access to government data is both intrinsically and instrumentally important.

Government data is information collected from the people of India, and it intrinsically belongs to the Indian people. They should have a right not only to access this information but also to access it seamlessly and free of cost, both locally, to understand how government data represents the place where they live, and in aggregate, to understand the impacts of policy choices on a national scale.

In addition to its intrinsic ownership by the Indian people, we highlight numerous instrumental advantages to India of building a more open government data ecosystem. Increasing access to government data will allow the media to better inform the public, civil society to advocate for the marginalized and hold the government accountable, and the private sector to innovate and drive economic growth.

Throughout this section, we use the term “government data” to refer to data collected intentionally and incidentally through the execution of government programs. This includes survey data, like the Economic Census and the NSS, as well as incidentally-collected data, such as MGNREGS projects completed and roads built under PMGSY. As regards incidentally collected data, this paper is strictly concerned with geographically aggregated data such that individuals cannot be identified but can understand highly local patterns of development. There are naturally significant opportunities in creating a data ecosystem around individual data as well, but the privacy tradeoffs are more significant and demand greater attention. We deal with this question in Section 5.

2.1. The Right to Data

Government data comprise a collection of information about the people and businesses of India, as well as the actions of the government. These data are generated and possessed, but not owned by the government as a distinct entity from the people of India. As the Chief Information Officer of the United States National Oceanic and Atmospheric Administration put it: “It’s our job to get that data out there. The data doesn’t belong to us, it belongs to the American people” (Rogawski et al. 2016). Most goods in possession of the government, like schools or canisters of cooking gas, belong to the public but must
be given to some, because one person’s use precludes another’s. Not so with
data: there is nothing to stop it from being freely shared with all members of
society, as their right.

This is not a new concept in India. The RTI Act grants all citizens of India
the right to petition the government for information that it holds:

Right to Information Act 2005 mandates timely response to citizen requests for government
information. […] The basic object of the Right to Information Act is to empower the citizens,
promote transparency and accountability in the working of the Government, contain corrup-
tion, and make our democracy work for the people in real sense. It goes without saying that an
informed citizen is better equipped to keep necessary vigil on the instruments of governance and
make the government more accountable to the governed. The Act is a big step towards making
the citizens informed about the activities of the Government. (Government of India 2005)

The right to information can take many forms; its implementation in India
takes the form of a government commitment to respond to petitions requesting
specific pieces of information. This approach makes sense in a twentieth century
technological paradigm, where there are significant idiosyncratic costs associated
with obtaining and disseminating that information.

In the twenty-first century, however, much of government information is
computerized and stored in the form of structured data, which can be queried
rapidly and free of cost. In this context, there is no value added by requiring an
intermediary to respond to requests from the public; it is technologically feasible
for the public to query the government databases directly, if only they are made
unrestricted. In short, the computerization of government activity and the Internet
for the first time enable a right to information that can be provided by default
rather than intermediated through slow bureaucratic processes. In a digital world,
the right to data is merely the logical conclusion of the right to information.

Technological change also means that information can now be analyzed in
aggregate as data. Many insights are only possible when information is stan-
dardized and aggregated into datasets. Statistical methods can be used to identify
inequalities, flag unreasonably high procurement costs, and test for the impacts
of government programs. The practice of the right to information should keep
up not only with technological change in information access and delivery but
also with the potential uses of information.

Currently, government data is closed by default: unless a decision is made
to share a dataset with the public, it sits on government servers, often inac-
cessible or poorly-accessible, sometimes even to those who generate it. If a
decision is made to share the data with the public, ad hoc design decisions are
made about the subset of the variables to be released, the level of temporal
and geographic aggregation, and the type of delivery mechanism (such as API
and click-through website).

The implication of the right to data is that government data should be avail-
able to users by default, with a clear set of dissemination standards. As with
other rights, this right to data has limits. Most speech is free but hate speech that promotes harm to other members of society is prohibited by the Indian Penal Code. Likewise, most government data should be freely available to all, apart from that which can cause harm by undermining security or violating privacy.

We describe a set of dissemination standards in Section 5, which would ensure that the public has maximum accessibility and benefit from government data, while retaining safeguards to prevent harmful use.

2.2. The Myriad and Unpredictable Uses for Government Data

Open government data has substantial instrumental value—it serves as a key input in efforts to improve governance, inform the public, create better public policy, or generate new economic opportunities. Some impacts are more easily quantified, such as the market valuation of technology firms that depend on public data resources, while others are more difficult to evaluate, like the extent to which data-driven transparency initiatives improve governance.

In this subsection, we demonstrate with five case studies how freely accessible data can yield a range of benefits through both public and private sector channels. We first describe how making data available to officials in Pakistan improved the performance of public health clinics. We then summarize two studies that showed how providing data to citizens can improve democratic performance. In the third case study, we use examples from our own research to demonstrate the insights that can be gained from using government data to evaluate government programs, but only if multiple datasets are available and linkable. Finally, two case studies from the United States illustrate the massive potential economic impact of high-quality open government data in the hands of the private sector: the rapid growth of the real estate technology sector, and the data products of the US National Oceanic and Atmospheric Administration (NOAA).

A key message is that government data is valuable for a wide range of potential uses, which are impossible for public officials in charge of data generation and dissemination to anticipate. This implies that a policy of data restriction by default will prevent a wide range of potential uses; only a policy of open data by default lays the foundation for the innovative use of data for development.

Case Study 1: Data to Empower Public Officials

The first domain in which government data can be leveraged for development is by the government itself. If officials can access clean, reliable data in a format that is accessible to them, they can improve performance through improved monitoring of staff and spending. One example of this comes from Punjab, Pakistan, where the public health system was plagued by low attendance and performance. Callen et al. (2020) conducted a randomized controlled trial of the introduction of a new inspection tool, “Monitoring the Monitors,” which replaced the existing paper-based system with a smartphone-based app to collect data on rural public health clinics. Critically, this system both generated high quality data and fed it
into an online dashboard that flagged in red underperforming facilities, delivering the data to inspectors in an easily accessible format.

Despite the many other challenges faced by the rural health system, this relatively minor informational intervention yielded impressive gains in performance. At the baseline, monthly inspections were occurring in only 23 percent of the clinics and doctors were present in only 24 percent of the clinics during operating hours. Inspections more than doubled in the first six months of the intervention, though more than half of the increase was lost by the next survey another six months later. Doctors also increased their attendance in treatment clinics. Senior policymakers appeared to use the data: flagged clinics saw much larger gains in attendance than similar clinics that had slightly better baseline attendance and thus were not flagged. Taken together, the evidence suggests that providing data to policymakers in a format that focuses attention on areas of underperformance can have meaningful effects even in very low-performing agencies and in the absence of other reforms. It is worth noting that the government did not develop the monitoring dashboards in-house; it was only through partnership and data-sharing that they were able to obtain actionable information.

Case Study 2: Data to Empower Citizens and Improve Electoral Performance

Elections are understood to improve governance through two related channels. First, voters choose politicians whose innate characteristics will make government work better for the electorate, because either their policy preferences are more aligned with their voters, or their high ability will produce good governance. Second, politicians in office may forgo opportunities for corruption if it makes voters more likely to re-elect them. Both channels rest on the assumption that voters have information on politician characteristics and performance, and can thus reward good politicians with their votes and punish bad ones. But voters may find it difficult to access the information required to discipline politicians.

Two recent studies in India suggest that this is the case. In the first, Banerjee et al. (2020) conducted an experiment generating report cards grading politicians on how well their spending aligned with the surveyed preferences of slum dwellers in their constituencies. They gathered detailed data on the allocation of councillors’ local development funds; notably, this information was only accessible to researchers through Right to Information Act filings and thus not easily accessed by voters in advance of the study. Councillors who received performance information changed their spending patterns, but only when they were told that the report cards would be published in the newspaper, making the information available to their voters.

In a separate experiment, George et al. (2018) studied the impact of providing information to voters on the criminality of political candidates in Uttar Pradesh. Since 2004, the Supreme Court has required all candidates for elected office to submit sworn affidavits detailing their personal information, assets, and any pending criminal cases against them. There is evidence that the election of
criminal politicians harms local development outcomes (Prakash et al. 2019) and that voters prefer candidates who are not criminals (Banerjee et al. 2014), yet nearly a third of candidates and elected politicians in India face open criminal charges. This information is theoretically available to voters via Election Commission websites, yet it is locked away in large PDF files that are difficult to find, download, and read. The Association for Democratic Reforms (ADR), a non-governmental organization dedicated to improving the electoral process in India, has converted tens of thousands of these into machine readable data, making possible a large body of research on politicians in India.

George et al. (2018) used ADR data to send 600,000 voters information on the criminal charges pending against politicians running in their constituencies via both phone calls and text messages. This information caused voters to redirect votes toward cleaner candidates.

Taken together, these two studies suggest that making government data more available to citizens can lead to cleaner elections and improve politician responsiveness to voter preferences while in office. Both experiments used data that was collected by government but was not functionally available to citizens, either because it was locked up on government servers until the filing of an RTI, or because it was released in a format that made it difficult for voters to access. The studies also demonstrate the creative applications of data that diverse users invent when given access. Banerjee et al. (2020) partnered with three institutions to conduct their study: Satark Nagrik Sangathan (Society for Citizens Vigilance Initiatives, an NGO) to file the RTI requests and construct the report cards, Dainik Hindustan (Delhi’s second largest newspaper) to publish the report cards, and Abdul Latif Jameel Poverty Action Lab South Asia (JPAL, a research organization) to conduct audits of public goods provision and disseminate information to politicians. George et al. (2018) relied on ADR data, partnered with three telephone companies to deliver their information to voters, and then used publicly available data from the Election Commission to observe effects on voter behavior. A key benefit of making government data more open is that it enables innovative uses of that data—uses that are difficult to anticipate in advance.

CASE STUDY 3: UNDERSTANDING THE IMPACTS OF MAJOR GOVERNMENT PROGRAMS

The government spends many crores every year on programs whose impacts are unclear and for which there is no built-in evaluation. Yet rich open government data provide researchers with the opportunity to study the impacts of these

1. See, for example, Asher and Novosad (2020) on the impacts of mining on criminal politicians, Prakash et al. (2019) on the economic impacts of electing criminal politicians, Vaishnav (2017) on why criminal politicians are so successful in India, and Fisman et al. (2014) on the returns to political office.

2. In a similar spirit but totally different domain, Berlinski et al. (2021) find that information on student performance delivered to parents via text messages improved grades and attendance.
programs and provide useful evidence for the improvement of future policy. We conducted a series of studies on the impacts of the Prime Minister’s Village Road Program (PMGSY), which spends approximately ₹15,000 crores per year (PRS 2021) and has to date constructed nearly 700,000 km of rural roads in over 200,000 villages (Adukia et al. 2020; Asher, Garg, and Novosad 2020; Asher and Novosad 2020). Our research sought to provide evidence on the impacts of new roads on economic development, educational attainment, and the local environment. We found that the main value of these roads was to connect people to urban areas: while PMGSY roads had small to no effects on business growth, living standards, agricultural practices, and deforestation, they did increase the exit of workers from agriculture via work outside of the village, as well as educational investments when returns to education in nearby urban areas were high.

This body of work relied almost entirely on government data. We merged data from many different government datasets at the village level: program administrative data from the PMGSY management and information system website, demographic data from multiple rounds of the Population Census, employment in businesses from the Economic Census, occupation and assets from the Socioeconomic and Caste Census, estimates of agricultural productivity and deforestation based on data from US government satellites, and educational attainment from the District Information System for Education. Some of these data were easy to obtain and merge, such as the multiple rounds of the Population Census. Others were easy to obtain but took years to link to the rest of the data due to data quality issues like inconsistent location codes and incomplete documentation. The PMGSY program data was technically publicly available at http://omms.nic.in/, yet it was only available as individual pages on specific roads, requiring much time and money to assemble into an analyzable dataset.

The takeaway of this case study is that government data allows for the evaluation of government programs, providing critical evidence to better allocate future resources. This research was only possible because of the Indian Government’s commitment to making such data available in some form. However, we spent multiple years and incurred significant expenses to obtain, clean, and link data, work that would not have been necessary had the government taken small steps (described in Section 5) to make these data available and interoperable. Evidence on the effectiveness of a huge number of government programs is currently lacking because data in possession of the government is not for practical purposes being released.

Case Study 4: Improving the Performance of Real Estate Markets

One area where open data has created tremendous economic value is in the real estate sector. Real estate is inherently costly and illiquid; buyers require detailed information about properties before making a purchase. The last decades have seen an explosion of innovative companies that combine private data from multiple listing services (essentially, aggregated lists of properties managed by
multiple brokers) with municipal records of deeds and liens, tax information, and neighborhood characteristics, vastly expanding the information available to buyers and sellers of real estate.

In the US, just two of the most well-known players in the property technology (proptech) space, Zillow and Redfin, have a combined market capitalization of $35 billion. These firms offer data-intensive services such as neighborhood comparisons, housing indices, real estate search, and property valuation (like Zillow’s Zestimate product). While these firms have since expanded into mortgage lending and real estate investment, among other activities, the core of their offerings and their original purpose centers heavily on the delivery of public data to customers in a streamlined and specific way. Indeed, Zillow originated as a company doing little more than providing customers with complete information about properties they were interested in, most of which was generated by governments and public agencies but not previously combined.

Without easily accessible, high-quality open data, the proptech market would not exist as it does today. Companies such as Zillow leverage a vast array of public data to fulfill their mission: surveys from the Census Bureau, parcel information in county records, economic indicators, imagery of homes, GIS data (such as from the Census Bureau, United States Postal Services, counties, and OpenStreetMap), and administrative boundaries (neighborhood, ZIP code, city, county/Federal Information Processing Standard (FIPS), metro/core-based statistical area (CBSA), state). Furthermore, the proptech sector develops and open-sources additional proprietary data that contributes back to the open data ecosystem (such as Zillow Research datasets3) and has also partnered with government data providers4 to advance open data standards and better align data production and consumption between the public and private sectors.

In short, an entire self-sustaining open data ecosystem has developed around the public data held in municipal and county records, an ecosystem of companies and data that would not exist if these county offices used a restricted-by-default approach to property and property transaction data. The market value of property technology companies depends entirely on a system of open government data. And yet the public benefit gained from the existence of this sector is vastly higher—because consumers capture much of the benefit created by these companies. The United States real estate sector transacts trillions of dollars per year; if property tech companies built on open government data can make this sector even a bit more efficient, then the economic value-added of that open data measures in the hundreds of billions of dollars.

The Indian real estate market is expected to reach a trillion dollars in size by 2030. The network of open government data on property characteristics and transaction history does not exist in India. Many firms such as housing.com and

Terra Economics and Analytics Lab are already trying to make use of government data in this space, but are constrained by limited access and inconsistent standards. Shifting the government owners of administrative datasets on real estate from a default of restriction to a default of open, clean, and interoperable data could unlock hundreds of billions of dollars in economic value.

Case Study 5: The Many Uses of Remote Sensing Data

The value of proptech companies like Zillow depends on a vast array of upstream public data from a range of sources. In this case study, we examine the downstream value derived from the data products of a single federal agency. The US National Oceanic and Atmospheric Administration (NOAA) is a scientific agency focusing on weather and atmospheric conditions, and serves as a major provider of public environmental data via the National Weather Service and a variety of satellite missions. Diverse users depend daily on NOAA products, from weather warnings to climate, ecosystem, and commercial data and modeling activities.

Many private companies have developed products and services that layer on top of NOAA capacities. The Climate Corporation, which was sold for $1.1 billion in 2013 (Tsotsis 2013), provides data-intensive agricultural consulting and insurance services that depend on and extend NOAA data and forecasts. The United States’ $8–10 billion financial market in annual weather derivatives is built in part upon NOAA’s data (Rogawski et al. 2016). More generally, nearly the entire US transportation network is dependent on NOAA to some degree, as weather routing for air and marine freight rely extensively on NOAA forecasts to avoid billions of dollars in losses due to weather interruptions (Government of the USA 2011).

Private products built upon NOAA data span many sectors and applications, including weather forecasting (micro-forecasting, domain-specific modeling), agricultural and fisheries planning and operations, intelligence for commodities trading, financial risk management/insurance/re-insurance, emergency forecasting and response, property management, energy, and transport.

While private players are now emerging in the field of meteorological data production, they are unlikely to displace NOAA activities as (i) private data are often complementary to NOAA data products; (ii) NOAA provides a stable baseline and benchmark of data and modeling capacity that are reliably free to use; and (iii) NOAA is trusted to provide impartial and unbiased data and models that are insulated from political pressure and the profit motive. Historically, the private sector has added value to NOAA data and sold that value-add in the private market. Now, private partnerships are evolving from strictly value-add to co-production; for example, Google and NOAA have tied up to leverage Google’s computing resources to make climate information “as accessible to the public as using Google Maps to get driving directions” (Rogawski et al. 2016).

As in Case Study 4, the government’s initial move toward creating an open data ecosystem has created tremendous private value, embedded both in the
companies that use these data and the customers who buy their products. These companies have, in turn, created new open data products which could have further downstream effects.

As these case studies make clear, there is an enormous range of different applications for data that government generates. In the next section, we develop a theory of the optimal role of government in the production, dissemination, and analysis of such data.

3. The Role of Government in Building an Open Data Ecosystem

In this section, we discuss the roles that governments can and should play in facilitating a data ecosystem that maximizes benefits to society, which has many creators and users of data other than the government, including citizens, the media, civil society, and the private sector. We argue that governments have a comparative advantage and essential role in some aspects of the data pipeline, but should take a back seat and work primarily as facilitators of socially beneficial activities in other areas.

We begin by presenting a framework guiding the optimal use of limited government resources. We show that data on citizen activities like that routinely collected by the government has many characteristics in common with classical public goods in economics; there is thus a strong rationale for governments to play a key role as a data creator. However, there are many civil society and private sector actors capable of data analysis, and the analysis and dissemination of insights have fewer positive externalities, so there is less of a role for government to prevent other actors from playing a role in these domains.

Throughout this section, we consider a data production and analysis pipeline, as depicted in Figure 1. In order, data is (i) collected; (ii) cleaned and validated; (iii) analyzed; and finally, (iv) real-world decisions can be made on the basis of that analysis. Each step of the pipeline can be undertaken by the same actor; alternatively, data can be transferred between actors at any stage. Government, NGOs, the private sector, and citizens can all engage in any step of the pipeline, provided they can access outputs from the prior step. Data and analysis at any stage can be kept private or can be made open; making data open would allow

FIGURE 1. The Data Production Pipeline

| Collection | Cleaning | Analysis | Decision-making |

Source: Authors’ illustration.

5. The data production and analysis pipeline discussed throughout this section was developed based on the framework laid out in Figure 0.1 in the *World Development Report: Data for Better Lives* (World Bank 2021).
all actors to use data outputs in downstream stages of the pipeline. We examine how actors would behave in a free market, and the optimal role for government.

Economists define two categories of goods in whose production there may be a particular rationale for government involvement: non-rival and non-excludable goods.

3.1.1. Non-rival Goods and the Data Pipeline

Non-rival goods are goods where one individual’s consumption does not prevent another individual from consuming it. Free markets will often produce non-rival goods without intervention, but their prices are likely to be higher than socially optimal prices. For instance, software and recorded music are both non-rival, and both are produced by vibrant private industries.

However, markets in non-rival goods are characterized by the same distortions as other high fixed cost and low marginal cost markets—indeed for non-rival goods, the marginal cost of production is zero. The distortion arises because firms need to charge positive (and thus inefficient) prices to recoup their fixed costs.

Governments that produce non-rival goods will optimally charge lower prices than the private sector, expanding consumer surplus from those goods. This is the rationale behind various government policies, such as public disclosure of patent contents and patent buyouts (Kremer 1998), both of which recognize that innovative ideas have an optimal price of zero. In a similar vein, the United States National Institutes of Health mandate that any research that they fund must be made open access; research findings are non-rival, and thus social value is maximized when the price of viewing those research findings is set to zero. In contrast, a private publisher of research (such as Elsevier) sets a high price for access to research findings, which is socially suboptimal given the non-rival nature of that research.

Every output of the data production pipeline in Figure 1 is non-rival. Raw data, clean data, and information about the world in the form of data analysis are all non-rival—their use by one party does not preclude others from using them. In fact, the more individuals using a given data source, the greater the value to the others using it, as errors are detected, and insights discovered. However, private producers of data are likely to charge sub-optimally high prices for data access to recoup their costs of production. The end result is that researchers at well-financed universities in wealthy countries often have better access to Indian data than researchers in India.

3.1.2. Non-excludable Goods and the Data Pipeline

Non-excludable goods are goods where it is impossible to exclude non-payers from deriving benefits from those goods. For instance, clean outdoor air and
national defense are classic non-excludable goods; if the goods are produced, individuals cannot be prevented from benefiting from them, even if they do not want to pay for them.

Non-excludable goods will be under-produced by a private market, because customers who can derive the benefits of the goods for free will not pay for them. Economic theory thus suggests a clear rationale for government participation in goods production: when non-excludable goods have significant social value, they should be produced by the government. Indeed, governments are the primary producers of many famous examples of non-excludable goods, like national defense, clean air, and water (produced by government through regulatory actions), large fireworks celebrations, and lighthouses.

The intermediate and final outputs of the data production pipeline are best characterized as partially excludable (Ostrom and Ostrom 1977). Each output is, in principle, excludable, but once a data output is in the public domain, it is difficult to prevent it from being shared further. There is nevertheless an active market in the production and sale of data and analytic outputs, especially in the domain of real-time data, where the eventual escape to the open is less important to a producing firm’s bottom line.

3.2. The Economics of Data Production, Dissemination, and Analysis

Social and economic data is non-rival and only partially excludable. It will, therefore, be underprovided and overpriced by the free market, justifying government participation in the data pipeline. Government participation in the production of socio-economic data is further justified by the tremendous fixed costs of generating survey data. Sample surveys and especially censuses are extremely expensive; they involve the hiring, training, and supervision of hundreds of thousands of enumerators. Few private firms are willing to engage in such costly activities in order to produce partially excludable goods.

Figure 2 provides a depiction of each sector’s participation in each stage of the data collection pipeline as it currently operates. The size of the boxes indicates the size of each sector at each stage of the pipeline. Private firms, media, and civil society all engage in data collection to one degree or another. Government engages in a tremendous amount of passive data collection just through the operations of its programs. Participants in MGNREGS create an automatic stream of data on government servers; the cost of independently tracking payments and public infrastructure constructed under MGNREGS would be huge, but government obtains this data at no cost, as an incidental side effect of providing services. Across the combination of government schemes, there is an incredible multidimensional flow of information.

The private sector also collects a large amount of data passively and actively; we focus on government data in this paper for three reasons. First, it is more representative than private-sector data since government interacts in some form
with nearly all its citizens. Second, government data pertains directly to the operations of public programs, which are in the public interest. Third, government data is owned by the public, so the public has a clear claim to access.

As depicted in Figure 2, at present only a tiny subset of government data is used by any sector in society. Government largely only releases data that it has used for its own analysis, and it does not have the capacity to clean and analyze a majority of the data that it collects. In contrast, the private sector, civil society, and media often collect data with the explicit purpose of guiding decisions, and thus they use a larger share of the data that they collect.

As shown by the arrows in Figure 2, there is significant sharing of intermediate outputs in the data pipeline, especially further downstream. Analytic outputs are widely shared between the different actors; private sector actors use government reports as information sources, and vice versa. Private actors also frequently use data created by the government (such as the NSS or ASI), and conduct their own analyses with them.

The economic framework presented above makes it clear why the majority of data created and analyzed by private firms is retained internally: to the extent that information and analytic results can be treated as excludable goods, they will not be shared, and to the extent that they are non-excludable, they will not be produced.

Government data, in practice, is also largely excluded from use outside government, but there is little economic rationale for this exclusion. Specifically, the vast majority of administrative data collected by government sits on servers and is never analyzed or disseminated, or is disseminated in a form that is unusable.
as data. There are, of course, valid reasons to restrict access, such as for public safety or privacy, but much of the data that the government generates is not actually sensitive. Excluding potential users vastly reduces the social value that the data can generate.

There is little reason for government to sit on a vast non-rival and non-excludable good for which the price has already been paid. As we highlighted in Section 2, tremendous social value can be unlocked by freeing that data, in myriad forms that are difficult to predict. However, it is important to release that data early in the data production pipeline. A majority of the government data never even makes it to the validation and cleaning stage; treating dissemination as something that only happens after that stage ensures that a majority of the government data will never be used.

An alternate data pipeline is presented in Figure 3. This figure represents a world where government recognizes the right to information as a right to data, and non-sensitive government data is made open access by default. In this world, civil society, media, and the private sector all benefit from the mass of passively collected administrative data. They can clean and validate government data (as the ADR has done with politician affidavit information, Section 2) and use it for their own analysis. Those analyses can then feed back into the government policy function, allowing governments to make better decisions on the basis of analysis that it is not capable of being conducted in-house (as in the case of the health worker attendance dashboards described in Section 2).

FIGURE 3. Enhanced Access to Data and Analysis for Decision-making when Government Data is Opened Early in the Pipeline

Source: Authors’ illustration.

Note: If government disseminates data early in the pipeline, taking care only to document and aggregate it to a level that preserves anonymity, the private sector and civil society can clean and analyze core components of that data, and use it to improve their decision-making. Analyses produced by civil society and the private sector can even be used by government, allowing government to make better decisions on the basis of its own data that it does not have the internal capacity to analyze. Decision-making in all sectors improves substantially when government data are made open early in the data pipeline.
India has a world-class technology sector, a large and sophisticated research community, a free press, and an active non-government sector ready to contribute to India’s development through the use of data. Private firms stand ready to invest in new data-intensive business activities as soon as data become available, creating jobs and often using that data to increase the efficiency of markets. Other applications will hold government accountable or generate evidence that can lead to improved policies. Government undoubtedly wants to maintain its own analytic capabilities, but the non-rivalrous feature of data means that in-house analysis will not be hurt by others’ using the data, and will likely be supported by having skilled analysts in the private sector and civil society working with the same data.

Maximizing social welfare in a context of non-rival and semi-excludable goods under control of the government dictates that those goods should be made non-excludable as early in the pipeline as possible. In practice, some government investments will need to be made to create usable data sources and APIs, and to aggregate data appropriately to preserve privacy. But government already invests in data portals for many forms of administrative data, though these are often unsuited for disseminating data in aggregate. The marginal cost of putting data in a form that is far more beneficial to the public is low. Section 5 discusses what it actually means to bring the cost to data end users as close to zero as possible. But first in Section 4, we address the issue of data quality.

4. Data Quality

A common mantra in computer science is garbage in, garbage out: any data-based analysis and decisions are only as good as the underlying data themselves. Concerns about the validity of both administrative and survey data produced by governments are widespread (Jerven 2013). In India, questions have been raised about the quality of core datasets, including the Population Census (Gill 2007), the Economic Census (Unni and Raveendran 2006), and administrative data from PMGSY (Lehne et al. 2018). These concerns focus heavily on the accuracy of public data—whether reported measures correctly reflect reality on the ground, or else have intentional or unintentional errors.

Data quality encompasses much more than whether the values in the data are correct, even if data errors draw the most attention; Table 1 highlights one categorization of the key dimensions of data quality, based on the 2021 World Development Report (World Bank 2021) and the United Kingdom Government Data Quality Framework (Government of the UK 2020). Quality can be described more expansively as the extent to which the data meets the objectives of its potential users (Redman 2008).

There is no question that the quality of much government data is suboptimal in several of these dimensions. While this paper focuses on the benefits of increased
dissemination of government data, these benefits are complementary to improvements in data quality. In this section, we make three key points that pertain to data quality: (i) there is substantial low-hanging fruit to improving data quality if only its value is recognized, and (ii) transparency and openness are likely to improve data quality in the long run, by drawing attention to errors and holding data creators accountable. Most of this section deals with administrative data, as quality concerns in India’s major sample surveys and their remedies have been widely discussed elsewhere.

4.1. Low-hanging Fruit for Improving the Quality of Government Data

The key ingredient to improving data quality is demanding adherence to a quality standard. There is no need to reinvent the wheel—many excellent data quality standards exist, both in and out of India. The United States government’s General Services Administration (GSA) issues Data Quality Guidelines to “assure the quality of its information products, including their utility, objectivity, integrity, transparency and reproducibility prior to disseminating information to the public” (Government of the USA 2019). At the core of the GSA’s guidelines is the importance of: (i) following best practices in data collection and processing and (ii) requiring replicability of the data. The JPAL Handbook on using administrative data describes how to deploy data quality checks when aggregating, coarsening, or removing personally identifying information from the data (Cole et al. 2020).

Many standards and frameworks have been written to encourage data quality as part of the Digital India umbrella program and the push towards e-Governance,

which contain language echoing many of the priorities of and problems identified in this paper (Government of India 2020a).

What is lacking is implementation. Standards are fragmented across agencies or not implemented at all, and data products delivered to the public do not reflect the aspirations identified in the standards.

Table 2 highlights some low-hanging fruit—ideas that are relatively easy to integrate into current data collection and dissemination practices. Many of these, like standard metadata templates or standardized location schema, simplify the process of collecting and disseminating data and contribute to interoperability across all government data—defined for this context as the ability of datasets to be linked together without loss of information.

These small efforts can yield large rewards. Consider the example of database location schema. With over 600,000 villages, 8,000 towns, and 700 districts in India, data users do not have the capacity to comprehensively correct errors in location names. When the same district is listed as “Kadapa,” “Y.S.R.,” and “Cuddapah” in different datasets (or in the same datasets), it creates substantial frictions and errors in analysis.

For a second example, consider how health clinics are characterized by two of the flagship data collection operations of the Indian Government: the Economic Census and the Population Census. The Economic Census characterizes firms according to the National Industrial Classification (NIC), and thus classifies

<table>
<thead>
<tr>
<th>Quality Standard Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized schema (such as location identifiers)</td>
<td>For example, geographic identifiers (village and town names and ID codes) should be systematically based on the most recent Population Census and reference those codes. Late into Census periods, alternate sampling frames (such as Local Government Directory) should be standardized and used across all ministries.</td>
</tr>
<tr>
<td>Standardized variable definitions</td>
<td>Unify variable specifications across all producers as appropriate. For example, industrial codes, land cover classification types, binary values for yes/no variables.</td>
</tr>
<tr>
<td>Metadata standards</td>
<td>Metadata for administrative data should be as detailed as it is for survey data. A standard metadata template can serve as a guideline for both dataset-level fields (such as data producer and owner, sampling methodology, spatial and temporal coverage) and variable-level fields (such as variable type, encoding, construction notes, questionnaire, and enumerator instructions).</td>
</tr>
<tr>
<td>Routine validation checks</td>
<td>Automated tests that catch common data errors. For example, negative incomes or years of education should raise red flags. If personally identifiable information is being stripped from medical records to ensure anonymity, the total population count should remain the same before and after anonymization. Or if household incomes are aggregated to the village level, then district-wise and State-wise totals and mean incomes should remain constant before and after aggregation.</td>
</tr>
</tbody>
</table>

Source: Authors’ compilation.
health clinics and hospitals under industry codes 86 and 87 (NIC-2008), and records their size (in terms of the number of employees) and public or private ownership. The Population Census records a range of different clinic types, such as primary health center and maternal and child welfare center, but does not record ownership. In practice, the inconsistency makes it difficult to use these datasets to assess the need for additional health infrastructure; clearer documentation on definition classifications for either of these datasets would make this task much easier. Indeed, many government departments have resorted to creating redundant GIS systems recording data like these, such as the National Rural Roads Development Agency, which recently released its own inventory of public services in a new data platform.

None of the ideas in Table 2 are difficult to implement, but they demand a paradigm shift in the creation of administrative datasets. These datasets normally originate from software designed to track the delivery of government services internally; the data that is created is a side effect rather than a central objective. As a result, the standards in Table 2 may not even be on the radar of the ministries generating the data. Designers of data collection platforms need to understand that they are incidentally producing valuable information in the form of data, and these low-hanging fruit can increase that value substantially.

India’s large-scale sample datasets like the NSS and ASI are released with end-users in mind and thus obey many more quality standards. However, they remain imperfect in terms of standardized schema and interoperability, and there is no single metadata standard across the different flagship operations. However, this is an area where standards have improved substantially when compared with old survey rounds.

4.2. Quality Concerns, Open Data, and Transparency

Open access government data is obviously of greater value when the data is of higher quality. What is less obvious is that opening access to government data is likely to directly improve the quality of that data as well, through two channels. First, data users will have the ability to identify errors; in the best case, this will allow for those errors to be studied and corrected. In the second best case, other users will at least be aware of the errors and able to adjust their analyses for them. Second, transparency creates accountability; if the operators of administrative data-producing systems know that their output will be scrutinized, they will have greater incentive to put more effort into their work and apply some of the quality standards mentioned above.

There is admittedly some risk that data fabrication could increase as data is scrutinized more closely, for instance, to hide the fact that a government program is underperforming. However, this risk is likely to be inflated. First, it is very difficult to fabricate data in a credible fashion—it will be inconsistent with secondary measures of the same real-world values, or it will leave a trail of fabrication that can be detected by data analysts in the public. Fabrication is unlikely to succeed
and, in fact, the incentives for fabrication are likely to fall as the probability of being detected increases.

More importantly, administrative data are already used in the implementation of programs; entries in administrative datasets determine who will get paid under MGNREGS, which firms will receive government contracts, and which households will be eligible for income support. Errors in these data have real consequences for recipients of government programs, and bringing these data to light for the errors to be detected is likely to have substantial social value.

Data quality is not only an input into an open data system, but also a critical outcome. Opening data to use and scrutiny creates a feedback loop that corrects mistakes, improving trust and quality as more users provide more inputs into the system. Data originators in government should not conceal low-quality data behind firewalls, but rather open them with the admission and objective that they can be improved.

In their report on open data, the Omidyar Network argues that open data should be considered critical infrastructure (Verhulst and Young 2016). The first step in doing so is bringing data originators on board with the value of what they are producing (even if the production is incidental), such that they recognize the value of adhering to a quality standard.

5. Effective Data Dissemination

This section discusses the “final mile” of data production: taking data that has been collected, and effectively delivering it to policymakers, researchers, journalists, businesses, and other potential users. Establishing high-quality data production systems requires massive public investments—investments that the Indian Government has in large part already been making. Running large-scale surveys, tracking data from government programs, and building the infrastructure to store incoming data is costly and complex. However, once collected, too much government data is hosted in silos across a fragmented ecosystem of websites, locked behind log-ins, hidden in convoluted catalogues, buried in cumbersome dashboards, or displayed in non-machine-readable formats. Accessing government data is still costly—either monetarily, or through time and technical capacity. This need not be the case. Effectively delivering data (with appropriate privacy safeguards) to a wide range of potential users costs very little when compared with the already paid costs of collection and the returns to better dissemination.

Consider the 2013 Economic Census as an example. Between January 2013 and April 2014, 1.17 million enumerators surveyed all 58.5 million establishments in India, covering every State and Union Territory in the country. The massive effort allowed the government to gather crucial data on businesses and

employment that greatly informs decision-makers in the public and private sectors. Commendably, the Ministry of Statistics and Programme Implementation (MoSPI) has changed its policies to make Economic Census microdata available for anyone to download—in earlier censuses, data needed to be purchased. However, the data files are stored in the obscure .nesstar format, which requires specialized technical knowledge to open. An average user or web application cannot access the data inside without considerable time, energy, and technical skill. The location identifiers can be linked to the 2011 Population Census, but only indirectly and there is no clear documentation for doing so. A huge investment in data collection was made, and the data was even made available for public download—the Economic Census is among the most open data releases of the Indian Government. But access to end-users remains limited because of insufficient last-mile investments. Most other administrative data platforms in India fare far worse on this dimension.

5.1. Delivery Principles

The goal of data dissemination is straightforward: data should be as easily used as possible. In India, dissemination is a key bottleneck between data collection and use. For the widest possible range of users to be able to leverage data at the lowest cost, dissemination must meet three standards: frictionless access, appropriate delivery, and conceptual clarity.

5.1.1. Frictionless Access

Frictionless access means that users can find and view data of interest with minimal time or monetary cost. Given the near-zero marginal cost of delivering electronic data, the optimal access cost for government data is zero. Restricting access through pricing, approval processes, or location requirements limits the potential applications that could be developed downstream from government data.

Data access is also constrained by search costs. This remains a thorny problem because similar fields can be found in different datasets with different levels of geographic granularity or population subgroup disaggregation. For example, a user interested in employment data may not be aware that firm-level employment data is reported by the Economic Census while State-level employment rates can be generated from the Periodic Labor Force Survey. In principle, search engines can lower search costs, but they often fail to deliver (see Section 6.2), depending on indexed data with clear metadata standards and consistent documentation, which may not exist for many datasets.

5.1.2. Appropriate Delivery

Appropriate delivery implies that the right data are served in the right format for the widest possible range of users. There is enormous variety in the format of data that users may request: government decision-makers will likely require high-level summary dashboards, researchers need direct access to machine-readable
data, and web applications require data to be served via Application Program Interface (API). Ideally, government data are sufficiently standardized such that they be format-agnostic, delivering data in all these formats as needed, providing access to users from a range of technical backgrounds.

APIs have become the standard mechanism for transmitting data across web applications and users. With APIs, organizations can build applications that add analytical or visualization layers on top of government data and have it updated in real time, or even develop complex commercial products that depend on public data. Data delivery by API is a universal standard for technical accessibility. Additional formats are useful if they match user interest but should not detract from the primary focus of delivering the raw data in a standardized, accessible manner.

Many government data delivery systems invest considerable time and effort in displaying simplified data through single observation access, dashboards, or visualizations. Accessing a single observation may be appropriate for some users, but is highly inadequate as a primary means of accessing government data; it essentially makes datasets near-impossible to assemble without building wasteful data scraping machinery.

Visualizations are helpful for data communication, but they are not the best way to serve raw data. Visualizations require selections, filters, and explicit choices about which data to display. While a chart or graph only has two or three axes, datasets have dozens, if not hundreds, of variables that a user may want to explore. Serving data strictly through dashboard visualizations is tantamount to effectively restricting access to the vast majority of potential uses of that data. In contrast, allowing users to directly access raw data unleashes applications beyond what any data originator could envision.

5.1.3. Conceptual Clarity

Conceptual clarity implies that the contents of government data are easy to understand. If a user does not understand a dataset and all the variables it contains, then that dataset is inaccessible and cannot be used effectively. Conceptual clarity is improved when all datasets are accompanied by metadata that describes when, where, and how the data was collected, and how exactly each variable is defined. Metadata is most effective when it is clear, concise, and presented in an expected format, so a user is immediately presented with the most important information. To that end, creating standardized, structured tables with mandatory fields for every metadata file ensures that the information a user will require in order to understand the contents of a dataset is present and reported consistently across data files. A metadata standard in government would vastly increase interoperability between different government datasets.

Finally, transparency around the entire data delivery pipeline is desirable. Government survey data include detailed manuals explaining sampling strategy, questions used by enumerators, protocols for non-respondents and enumerator instruction manuals. This level of documentation should be just as important for administrative data, but is often lacking, at least in part because the data is
gathered incidentally and released as an afterthought. But in many cases, these same enumerator manuals exist and are just not published. Documentation for the data preparation and aggregation process may not currently exist for administrative data, but documenting these steps is a best practice which would improve both usability and reduce data errors.

5.2. Safeguards

When discussing data delivery, it is important to consider the reasons why data are often not made available by government. Many of these reasons are not justifiable, such as the fear of exposing program implementation problems to public scrutiny or a lack of vision about how the data could be used by those outside of government. But some of these reasons are valid and should be considered carefully—the most important of these is the concern for privacy. Researchers and businesses are always interested in using the most disaggregated microdata available, as it allows for the richest analysis, but this can risk exposing Personally Identifiable Information (PII) that could be used for harm. The value of insights that can be gleaned from granular data is high, but is always secondary to government’s legal and ethical responsibility to protect individuals’ rights to privacy, as upheld by the Supreme Court of India in 2017.

There are several well-established techniques to handle privacy concerns. PII can be carefully scrubbed from the data, ensuring that individual records cannot be linked to any identifying information. Data can also be aggregated to higher geographic units, such as shifting from individual records to summaries of neighborhoods, towns, or villages; releasing data aggregated to town and urban neighborhood level poses little risk. If geographic aggregation is not appropriate, data can be pooled across other dimensions or otherwise transformed to mask the identities of individuals or firms—this was recently done to great effect by Chetty et al. (2020) as they developed data resources out of PII to track the post-COVID economic recovery in the United States.

In cases where there is high value to making PII available in government data, secure data centers are a standard solution, allowing permitted researchers selective access to complete data. Proposals for such use need to be solicited and vetted to ensure that such data is being used purely for research purposes that serve the public interest. Governments can also elect to allow for the release of complete data including PII after a certain amount of time has elapsed. The United States Census Bureau releases all records 72 years after collection.

5.3. The SHRUG Open Data Platform

At Development Data Lab, one of our primary goals has been to make Indian data more accessible. Two key platforms for this work have been the Socioeconomic High-resolution Rural-Urban Geographic Platform for India8 (SHRUG; see

Asher et al. (2021) and the DDL COVID-19 India platform, following many of the principles outlined in this paper. The SHRUG currently stitches together 30+ years of socioeconomic data on the universe of individuals and firms in India, with records from censuses, data exhaust from administrative programs, and remotely-sensed measures of crop productivity, economic activity, and poverty. Geocoded to the village and town, this dataset allows researchers, activists, and policymakers to understand the economics, demographics, and public services of every village, town, and legislative constituency over the period 1990–2018. The SHRUG has been downloaded over 10,000 times and is used by all segments of society. The DDL COVID-19 India platform is a series of district-level aggregates put together to provide information for policymaking around responding to COVID-19, and is described in more detail in Section 7, following similar principles to the SHRUG.

In order to maximize frictionless access, we freely released SHRUG data under an Open Data Commons Open Database License (ODbL), ensuring that each dataset is catalogued with both high-level and detailed descriptions, and that all data were accompanied with extensive codebooks containing information on all platform contents. While limited resources have delayed our ability to develop and maintain APIs, appropriate delivery is facilitated by serving bulk microdata downloads in multiple formats (CSV and Stata), and via a mapping platform for easy visualization as an add-on to downloadable data but not a substitute. We target conceptual clarity by using a machine-readable metadata standard, ensuring that the same information is represented for each dataset. The codebook further explains every variable, the data collection process, and errors and concerns with the data.

The process of constructing the SHRUG involved ten years of work identifying, collecting, cleaning, and linking data across a range of government sources. Much of this work involved backing out location identifiers which were available to data originators but were not included with the data (for instance, when datasets were based on a recent Population Census but included village names rather than village codes). The requirement to put in this kind of work to obtain usable data is, in practice, a major barrier to access. We have processed and included data from dozens of government datasets and schemes, but there are hundreds more that we have not had time or funding to integrate. There is no reason that the Indian Government cannot deliver its data in a fully interoperable format, eliminating the need for this additional effort.

6. Assessing India’s Government Data Status Quo

This section evaluates the current state of government data in India. Enormous progress has been made in the computerization of government data, and impressive efforts have been made to make data available through a range of both program-specific portals and sites that aggregate data from a variety of sources.
Yet despite these gains and the existence of multiple policies committing the government to opening its data, much administrative data continues to be under restricted access. Further, the subset of government data available in the public domain is often delivered in a way that prevents widespread use. Nearly a decade ago, the National Data Sharing and Accessibility Policy (NDSAP) of 2012 committed the government to the principles of open access, searchability, machine readability, documentation, interoperability, and quality to all non-personal, non-sensitive data produced using public funds. However, government datasets rarely live up to all of these principles.

Fortunately, given the strong foundation of digitization of government and efforts made to encourage availability and a mindset of public ownership of data, the path to realize this paper’s vision is largely restricted to comparatively low-cost issues of last mile delivery. The remainder of this section describes and applauds the Indian Government’s commendable efforts toward digital data production, and outlines the critical missing investments in delivery that can fully capture the potential returns of open government data.

6.1. Strong Fundamentals: Digitization and e-Governance across Center and State

The Government of India has made extraordinary strides not only in moving from paper to computers, but also in the development of a modern vision of digital service delivery. This vision has evolved over the years, from isolated computerization efforts and localized digitization initiatives in the late twentieth century to the expansive whole-of-government Digital India flagship program of today. One of the three core vision areas of Digital India is “governance and services on demand,” which has been supported by the National e-Governance Plan (2006) calling for the digitization of governance across multiple domains ranging from agriculture to justice, and its replacement, the e-Kranti program (2015), which strategizes and advocates for the electronic delivery of public services. The language in these foundational documents illustrates a deep recognition of the need for data that is interoperable and integrated, publicly-owned, safeguarded, and easily accessed.

Digitizing administrative data is the first essential step to open government data. The Government of India has made significant progress toward digitizing data collection; registration of crop pesticides, State-wise details of active taxpayers, water and air quality monitoring, voter registration, motor vehicle registration, and the tracking of cases filed across district courts are some of the many processes that have been computerized. For example, the Ministry of Finance has implemented complex and extensive digitization projects such as setting up a Tax Identification Number (TIN) for Income Tax applications, Indian Customs Electronic Data Interchange (ICES), and Automation of Central Excise and Service Tax (ACES). More generally, the Ministry of Electronics
and Information Technology (MeitY) is actively pursuing public-private partnerships under Digital India to modernize data collection and governance. The government has also announced that the upcoming Population Census will move away from the traditional paper-based survey to digital data collection, much like the United States’ transition to a digital census for the first time in 2020. Further, digital Management Information Systems (MIS) have been set up for a range of national welfare programs and schemes such as MGNREGS, Pradhan Mantri Fasal Bima Yojana (crop insurance), direct benefit transfers, export promotion schemes, PMJAY-Ayushman Bharat, National Urban Livelihoods Mission, electrification schemes, PMGSY, and so on.

As a result of these significant and commendable ongoing investments, the volume of administrative data generated by all levels of government in India has increased enormously in the past decade. However, much of this valuable administrative data remains locked behind dashboards and user log-ins, is not made available in an appropriate manner, and lacks the necessary documentation and metadata required for use. These remaining barriers mean that the potential value of these hard-won digital resources is not being fully realized.

6.2. Poor Delivery: Missing Last Mile Investments that Deter Use of Open Data

As described previously, three standards are required to be met for the greatest value to be delivered to the largest possible set of users: frictionless access, appropriate delivery, and conceptual clarity.

6.2.1. Frictionless Access

Restricted portals. The District Development Coordination and Monitoring Committees (DISHA) dashboard, built by the government in partnership with a civil society organization, was a promising effort to harmonize disparate government data but still falls short. The platform was intended to harmonize data from 42 national government schemes (such as MGNREGS) in a fully structured interoperable dataset with maximum geographical and temporal disaggregation. The real-time scheme data hosted on the platform can be interrogated at the Gram Panchayat level and is supplemented by interactive visualizations. Unfortunately, despite the fact that it does not contain sensitive data, access to the platform is limited to government officials, so the technical success of DISHA is limited, and the potential value among firms, software developers, think-tanks, researchers, and private citizens is unrealized.

High search costs. While most government data is locked in restricted access portals, the narrow sliver of data that is published on the public domain is difficult to use because of high search costs and extremely variable documentation standards. The aim of data.gov.in, the flagship national Open Government Data (OGD) Platform for India, was to create a public intent data lake where users can freely access data to explore, test, or power detailed analysis. It is an extensive
repository of structured and unstructured datasets. In the absence of high-quality search and consistent documentation on the variables contained within each dataset, it is difficult to find relevant data. As one expert we interviewed put it, “One can occasionally come across a very useful dataset on the portal, but this happens mostly by chance.”

6.2.2. APPROPRIATE DELIVERY

Few APIs. The Government of India has demonstrated an inclination toward API access for non-sensitive publicly available data, but APIs still need to be built across all publicly available datasets at narrow geographical units. Currently, this directive is not consistently met, even for data that are open. The OGD platform offers APIs only for a subset of databases hosted, and the usability and capacity of the APIs is lacking. While the ongoing India Urban Data Exchange initiative prioritizes open APIs and good documentation for every dataset, the platform has limited scope and coverage.

Excess aggregation. In many domains, it is impossible to find geographically disaggregated data in the public domain. Most datasets hosted on major public data platforms—such as OGD, National Data Archive, Census digital library—host data at the state and, in rare instances, district level. Data aggregated to States masks substantial heterogeneity and has limited potential for innovative reuse. Disaggregated data is accessible through select digital portals, such as the MGNREGA public data portal, but this should be the standard for all government schemes. Platforms such as E-courts allow users to download unit-level (case level) data, but the data is difficult to process and devoid of any documentation.

Lack of interoperability. The ability to link distinct datasets and analyze them together unlocks extraordinary value, but is rarely a feature of India’s current publicly available data. Multiple strategy documents suggest that many within the government understand its importance (Government of India 2018; the National Data Sharing and Accessibility Policy [NSDAP 2012]). Further, an interoperability framework for e-governance was developed and published by the Ministry of Electronics and Information Technology in 2015 (Government of India 2015). However, in practice, datasets on the OGD platform are very difficult to combine because of inconsistent units, definitions, and standards (geographic, industry names, and so on). Often, data products generated even within the same department are not interoperable.

Inadequate safeguards. In the absence of clear safeguards for privacy, data is neither open nor secure in the Indian context. In the status quo, on the one hand, non-sensitive microdata is arbitrarily held from the public domain. On the other hand, individual level sensitive data are often available in the public domain on a discretionary basis. In some cases, substantial personally identifiable information

9. https://smartnet.niua.org/content/2bac29b3-ffbd-45df-a219-91c07b343dbd.
is accessible in the public domain without any checks or safeguards, such as in electoral rolls and MGNREGS beneficiary details.

6.2.3. Conceptual Clarity

Insufficient metadata. Without descriptions and instructions for a dataset at the variable and dataset levels, it is nearly impossible for a user to successfully interpret and deploy the information that has been collected. This includes both higher-level descriptions of the mechanisms and choices applied during data collection as well as specifications of variable construction, type, encodings, and other essential information. The absence of clear metadata for many administrative datasets is likely to lead to analytical errors and misinterpretation. In the Indian administrative data context, metadata is rarely available, and does not follow a consistent standard across data sources.

Transparency. It is almost unheard of for administrative datasets to have clear and detailed documentation describing the data collection and aggregation process, and possible sources of errors. As these data are increasingly used for decision-making, it is important to demand greater documentation of all these steps.

A comparison between the national open data platforms of India and the UK makes clear that while the OGD platform should be commended for the quantity of data that it makes publicly available at zero charge, the quality of both the data and the delivery system can be much improved.

The absence of final mile investments in delivery prevents the latent value of the enormous quantities of administrative data generated by the Indian Government from being harnessed by researchers, civil society, firms, and other government departments. However, several steps in the right direction are underway to address the delivery deficiencies outlined above. For instance, The National Data Analytics Platform (NDAP) is an initiative under development at NITI Aayog seeking to standardize and centralize access to public data (Government of India 2020b). NDAP aims to harmonize data from across all sectors and ministries in the Indian Government and re-host them in a standardized, well-documented manner that will allow free access to users. NDAP will be designed to allow users to access and download data alongside comprehensive and standardized metadata from multiple sectors—health, agriculture, education—in one place, linked together using a common data model. Critically, all data will have consistent geographic identifiers, allowing for the joint analysis of data coming from disparate sources.

Some states have already established effective open data platforms, such as the Government of Telangana open data portal. It is searchable, up to date, well documented, provides API access, and adheres to the principle of maximal disaggregation. The Chief Minister real-time dashboards developed for multiple states are similarly useful, but quality standards vary by state and the backend data is not available for bulk download at the village or town level. Inconsistent
quality and the inability to download data in their original format prevent these data from feeding any analysis or application at scale. However, the success of digitized governance at the sub-national (state, urban local body) level through a government partnership with the E-gov Foundation has made impressive progress, which needs to be followed through with a clear commitment to opening the data.

6.3. Concrete Steps towards Realizing the Potential of Open Data in India

This subsection sketches a few concrete steps that would make major progress towards truly open government data. The core principle is that data should be open by default unless there is a justifiable reason for restricted access, and that restricted access can be both safe and much better than no access.

First, all data not referring to individuals should be automatically open at a zero nominal and real cost. This would entail open access APIs at the microdata level, as opposed to geographically aggregated data. Non-sensitive and non-confidential data collected by any public authority must be hosted on an easy to navigate platform with clear standards for documentation and interoperability.

Second, all data deemed sensitive should still be released in an aggregated form at the minimal geographic level that prevents the potential for harm. For population and asset ownership data collected in the Population Census, this is likely to be the enumeration block, which would allow for systematic access to neighborhood-level data for the first time in Indian history. Other datasets, such as health insurance claims through PMJAY, may only be collected with village/town identifiers and thus should be released at that level. The protection of marginalized communities may argue in favor of releasing religious or caste data at lower resolutions, but the point here is that there is always a level of aggregation that prevents harm and delivers valuable data to potential users.

Finally, where appropriate, personally identifiable data should still be made available to researchers and policymakers at minimal cost and minimal hassle through standardized and secure procedures following global best practices (for example, anonymization, secure environment, remote access on a controlled server for analysis). There is no need for India to reinvent the wheel on restricting access to sensitive data. For instance, in Japan, under the recent Act on the Protection of Personal Information (APPI) adopted in 2017, an independent agency has been set up to handle two specific kinds of data: personal information (name, date of birth, email address or biometric data) and special-care information (medical history, marital status, race, religious beliefs, and criminal records). The system of the United Kingdom Data Service Secure Laboratory elaborated in Box 1 is another example of open by default and restricted use in a controlled environment for personally identifiable and sensitive information. The United States Census similarly allows researchers access to sensitive data in a secure environment that prevents the risk of leaking personally identifiable information.
A comparison between the national open data platforms of India and the United Kingdom (UK), widely considered one of the world leaders, illustrates the high-return investments that India is not yet making. Both platforms host enormous quantities of open access administrative data at zero monetary cost. Despite hosting open data at comparable scale as the UK, the national open data portal for India falls short of delivering high returns because of delivery issues described below.

Searchability: The search functionality for data.gov.in requires users to know the exact name of the dataset, and tables are stored in a flat structure without an ability for the user to track multiple datasets that may be components of the same data collection exercise. On the other hand, the primary feature of the landing page of data.gov.uk are categories of data to guide the user in her exploration of useful datasets. Related datasets are nested and displayed on a single page with technical notes and supplementary information for the user to understand how the components are related.

Documentation: data.gov.uk has clear documentation that walks the user through steps to access data via API or publishing a database on the platform. All datasets hosted on the platform are machine readable. Each individual table is supplemented with documents and technical notes describing the data and contact information for further queries. On the other hand, only a subset of datasets hosted on data.gov.in have supporting metadata. There are no structured metadata fields required for describing what is in the data either at the dataset or variable level. Instead, there is usually a link to the ministry that produced the data. It is highly likely that a user will need to seek more information to unlock value using the data.

Disaggregation: The two open data platforms have substantially different approaches to disaggregation. While the integrity of most datasets are generally maintained from production to release on data.gov.uk, this is not the case on data.gov.in. The datasets hosted on UK’s national open data platform are typically available at the unit of data collection (for instance, a number of datasets hosted under the health category are disaggregated at the hospital level; some datasets are available at a spatial resolution of 10 kilometers square). On the other hand, most datasets hosted on the OGD platform for India are disaggregated at the State-level and rarely at the district level. The low spatial resolution of data limits usability severely by non-government and government actors.

Open by default with safeguards for privacy: Finally, the UK approach follows the principle of open by default, and restricted access only when justifiable. The UK Data Service Secure Lab\(^\text{10}\) was established to ensure data that is too detailed, sensitive, or confidential can still be accessed for analysis but in a controlled environment. Specialized staff apply statistical control techniques to guarantee safe delivery. Data accessed through the Secure Lab cannot be downloaded. Once researchers and their projects are approved, they can analyze the data remotely from their organizational desktop, or by using a Safe Room. In the Indian context, microdata is almost never released in the public domain. The absence of protocols in place to ensure confidentiality when microdata is sensitive leads to a system where the ability to access data hinges on connections with bureaucrats in appropriate government departments. In India, the government is the de facto owner of data, whereas in the UK, public intent data belongs to the people both in spirit and practice.

Source: Authors’ compilation.

In the next section, we illustrate how the existence of the mandate under a proposed coherent Right to Data could have already saved significant lives and livelihoods in the context of the pandemic in India.

7. Application: The COVID-19 Crisis in India

The pandemic is a compelling example of how open data could have literally saved lives and livelihoods in India. Even after two devastating waves of COVID-19, incomplete data on testing and deaths continues to hamper our understanding of the virus and to plan the policy response. In this section, we first call attention to the successes of Indian civil society in transforming fragments of discordant data released by various levels of governments into high-value efforts to inform the COVID-19 response. We then show that the absence of critical open government data has led to a series of missed opportunities to save lives.

Despite the paucity of open access health infrastructure, civil society has filled the information vacuum. Consider district-level COVID-19 infection and death counts, the most basic information required for responding to the virus. While individual states have been releasing infection and death data through daily bulletins and reports, these daily updates have not been machine-readable and were often released as images by disparate official state and district government accounts on social media. This made them relatively difficult to access as data, until a volunteer-based organization, covid19india, set up a system to automatically aggregate these daily updates and hosted the data for all states in a single open access database covid19india.org. Crowd-sourcing efforts based on media accounts also created the first public dataset describing COVID-19 cases disaggregated by age and gender. These crowd-sourced projects have been the single most important source of information for citizens, journalists, think tanks, and researchers trying to understand the pandemic.

At Development Data Lab, we created an open access portal, posting and linking a wide range of policy-relevant variables at the district level, including demographic data extracted from censuses, public and private hospital capacity data, migration, vaccination counts, and price and volume from agricultural markets, among others.11 We supplemented this with regularly-updated infection and death data from covid19india, an easy step given their data release in the form of an API.

To our knowledge, the site was the only data source directly linking COVID-19 information to external social and economic data. Journalists used data from the platform for investigative analyses of rural-urban divergence in disease spread (Radhakrishnan 2021a) and vaccination disparities across districts (Radhakrishnan 2021b) and gender (Deshpande 2021). Health secretaries of State governments used the platform to plan quarantine infrastructure for returning migrants. Epidemiologists used platform data to develop risk forecasting models.

The parsimonious reports released by the government were transformed into useful data by civil society. Unfortunately, a considerable volume of essential data has been withheld by the government. We highlight three examples.

First, real-time and reliable testing data continues to be the single largest gap in COVID-relevant open data in India. Testing numbers are essential for understanding whether changing case counts in a district reflect changing infections or just changing testing rates. If daily cases for a given district appear to be declining while the number of tests conducted are also being scaled down, a false sense of security is created.

The Indian Council of Medical Research (ICMR) has an operational portal where all testing centers report daily tests conducted. This portal is accessible to State governments for monitoring, but the data from this portal were never made public, even in aggregate, a decision strongly in tension with the spirit of Right to Information clause 4(2) (Government of India 2005). The public’s option to file an RTI request is of no help when data are needed in real time. Testing data could have been used to design early warning systems, inform public health campaigns, and to allocate aid and medical resources.

Next, consider the use of serological surveys. India has been at the forefront in the gathering of sero-positivity data, with dozens of studies conducted across India through ICMR. But disaggregated data from these sero-surveys were never released. Protection of privacy is not a defense, as district-level rates do not reveal anyone’s private information, nor does concern that the data were noisy or subject to error. Releasing these data would have put valuable information in the hands of analysts, inform vaccine prioritization, and non-pharmaceutical interventions. In contrast, in Brazil, another leader implementing national sero-surveys, sero-data was made much more widely available, allowing better tracking of infection rates across regions (Hallal et al. 2020; World Bank 2021).

Finally, the case of gated Goods and Services Tax (GST) transaction data is a considerable missed opportunity to leverage open data for an effective pandemic response in India. This was highlighted by Pronab Sen during the 2nd T.N. Srinivasan lecture delivered as a part of the India Policy Forum in 2020 (Sen 2020). Sen rightly pointed out that the GST database, which is gated (like most administrative datasets), is extremely valuable for tracking the economic consequences of the pandemic and associated lockdowns, but has not been put to use. It is unprecedentedly granular in terms of geography and economic transactions. The real-time GST dataset is an excellent example of microdata that can be released with open-access APIs aggregated at the village, town, or sub-district to protect confidentiality of parties while still adding tremendous value. In the absence of these data, researchers had no choice but to resort to imperfect proxies for economic activity such as nightlights (Beyer et al. 2021), agricultural weekly market data (Lowe et al. 2020), and online retail data (Mahajan and Tomar 2021) to uncover the impact of COVID-19 on economic activity in India. Removal of the artificial barriers on administrative data such as aggregated GST records could have provided a substantially higher resolution understanding of the economic impact of COVID-19 that could have then informed policies focused on economic recovery.
The missed opportunities from inaccessible administrative data have hampered the response to the COVID-19 crisis in India since March 2020. However, the examples laid out in this section illustrate how safeguarded, yet high-resolution administrative data should be made open by default as a priority to prevent unnecessary ignorance in future waves of COVID-19 or other crises.

In view of the unprecedented health and administrative emergency caused by COVID-19, there were understandable gaps in government capacity to handle the crisis. However, it is important to learn from experience and the pandemic could motivate better policymaking and more inclusive functioning at all levels of the government by taking civil society and the private sector on board when their support is most needed. Simultaneously, it is critical to provide universal access to government data at all times in order to educate and inform the public, which would, in turn, help save lives and mitigate suffering in the event of another health crisis in future.

8. Conclusion

In this paper, we have argued that government data should be freely accessible to all members of society, both as their right, and because opening government data contributes in myriad ways to development and economic growth. Open government data improves policymaking, contributes to accountability, empowers citizens, and provides valuable inputs to firms throughout the economy. To achieve its potential, data must be high quality and the marginal time and monetary costs of accessing it must be close to zero, so that all potential users can make use of it.

For reasons of space and coherence, this paper could not do justice to many issues regarding the production and use of government data in India and beyond. In this paper, we chose to focus on the feasible steps that could make the huge amounts of data generated and released by the Government in India much more valuable to policymakers, researchers, and the society at large. For thoughtful discussions of the political economy of data generation and dissemination, regulatory issues such as privacy, and data quality, please see the excellent discussions by Robert Cull and Ashwini Deshpande appended with this paper.

In the introduction, we called for a philosophical shift in the government’s attitude towards data: away from treating it as the private property of government elites and towards thinking of it as belonging to the people of India. It is likely that this will require not only top-down action from officials as we propose here, but for a broad coalition of activists, journalists, researchers, and private sector leaders to build a consensus around the responsibility of government to make data freely available to the very people from whom it was collected in the first place.
To conclude, we highlight three additional investments that are complementary to opening government data and would have high returns in terms of economic growth and development.

8.1. Private Sector Data for the Public Good

This paper has focused on the value of open public data, but increasingly, the richest data on the Indian economy is in the hands of the private sector. Payments platforms generate data on consumer expenditure, job sites capture information on labor supply and demand, and banks record information about default and household savings. The private sector has particularly rich real-time data, as the operations of firms generate huge amounts of information on the economy. But these data are rarely used for research or the design of public policy.

One reason for this is that there is not a clear unified framework for such contributions to be made. Facilitating the creation of linked public and private sector data would benefit researchers and policymakers alike. Economic researchers would gain access to much richer data on consumer and firm behavior. Policymakers would be able to respond to needs much more rapidly with real-time data at their fingertips. Participating firms contributing data to this effort would signal a strong commitment to being socially responsible citizens.

Privately-held data describing spending, business activity, employment, education, and public health have been safely leveraged in the United States by Opportunity Insights\(^\text{12}\) at Harvard University to understand the economic impacts of COVID-19, and to inform policymaking in the United States (Chetty et al. 2020). This data release is exemplary in safely balancing the tradeoff between privacy and precision. While the underlying high-resolution data contains individual information, data is shared with the public at an aggregate and anonymized level, maintaining high geographic granularity but virtually no possibility of identifying individuals.

A much more detailed discussion of how private and public data can be combined for great impact can be found in the excellent *World Development Report 2021: Data for Better Lives*. For instance, it highlights how private sector sources can yield far richer poverty maps and thus improved targeting of anti-poverty programs as compared to government data alone, how commercial data can be used to monitor public health, or how aid can be allocated for disaster recovery.

8.2. Investing in Data Literacy throughout Society

Data on its own does not improve development outcomes; it is an input, like electricity or education. For data to contribute to India’s development, it needs to be used for decision-making. We have argued that a wide range of actors across

\(^{12}\) https://opportunityinsights.org/paper/tracker/
the public, civil society, and private sectors stand ready to put government data to productive use. But data literacy in India remains low and the capacity of the government, in particular, to use data effectively is limited.

As importantly, government should have better capacity to make use of data to improve its own functioning. Open and interoperable data is a starting point for making evidence-based policy, but the generation of evidence also requires data analytic skills and the resources (such as time and computing) to apply them. Building this capacity can be done in many ways. The Indian Statistical and Economic Services could be expanded to provide a pool that policymakers and administrators could draw on to help answer the questions critical to their programs. Data analytics units could be created in every ministry (both at the Center and in the States) to organize and release administrative data, and to use that data to provide insights and flag problems.

8.3. Open Data for Decentralization

With the passage of the 73rd and 74th Amendments in 1992, India committed itself to improved governance through decentralization of powers to the municipal level (rural panchayats and urban local bodies). Social scientists often write about decentralization as a tradeoff between improved information and incentives on the one hand, and the potential for elite capture and decreased professionalism on the other (Bardhan 2002). Open data can help support the implementation of decentralization in India, in particular by providing citizens, gram sabhas, and elected panchayat officials with essential data on the economic status and performance of government programs in their local regions, and information on how those compare to other regions.

Since many of these local bodies may have limited data literacy, they need something more than raw data. But the government creators of these data do not have the comparative advantage in conducting the market research to understand the information that leaders need, nor to develop appropriate delivery platforms. The government’s role is to make the raw data open, at which point advocacy and private sector organizations can build the information provision layers that will make these data useful to their audience of local leaders.

References

To view the entire video of this IPF session and the General Discussion that ended the session, please scan this QR code or go to https://youtu.be/_bH61Dktr70
The paper’s main arguments are quite compelling and India certainly provides a fascinating context to study the potential benefits of, and impediments to, open public data. These main arguments boil down to two key points. Government data are valuable. Making it more open enables innovative uses of that data, uses which are impossible for public officials in charge of data generation and dissemination to anticipate. Secondly, for India, effective delivery of data with appropriate privacy safeguards to a wide range of potential users costs very little when you compare it with the already paid costs of collection and the returns to better dissemination.

As a newcomer to the Open Data situation in India, these points and the evidence used to support them seem eminently reasonable. They also resonate quite well with the key messages from World Development Report 2021: Data for Better Lives, for which I was one of the co-directors. However, this paper lays out a clear vision for achieving open data in a large and influential country in a way that was not possible in the World Development Report (WDR). My critiques and suggestions involve placing greater emphasis on a few topics. The first is the potential for exploiting synergies between data generated and collected by the private sector and public intent data collected by governments. The second is a call for more on the scope of the remaining challenges regarding data protection and data governance. The third is on the political economy of government data sharing in the Indian context.

Data Synergies

With respect to synergies, the paper has relatively limited treatment. This is by design; it focuses on government data for three reasons. First, government data is more representative than private sector data since government interacts with
all citizens in one form or another. Second, government data pertains directly to operations of public programs, which are in the public interest. Third, since government data is ultimately owned by the public, the public has a clear claim to access to it. Thus, making government data available widely should be a high priority.

At the same time, near the very end of the paper, it is acknowledged by the authors that “increasingly, the richest data on the Indian economy is in the hands of the private sector,” and that, “the private sector has particularly rich real-time data, as the operations of firms generate a huge amount of information on the economy. But these data are rarely used for research or the design of public policy.” A key theme from the World Development Report (WDR) 2021 is the potential to combine public and private intent data to address development challenges. Indeed, the WDR argues that public and private intent data are inherently complimentary since the strengths of one are the weaknesses of the other. Specifically, compared with traditional public intent data from censuses and surveys and administrative data sets, new private data sources can offer greatly improved timeliness, frequency, and granularity of data. Although as noted, these private data tend not to be fully representative in coverage. Given these features, new private intent data can contribute significantly to addressing public sector development challenges.

Private intent data collected through cell phones, Internet usage, satellites, remote sensors, and other sources provide information about individuals and geographical locations that traditional public data simply cannot. The COVID-19 pandemic provides a timely illustration in which call detail records and geospatial data from cell phones have been used to track the spread of the disease and to assess the effects of policies designed to mitigate it, such as “stay-at-home” orders.

Beyond the pandemic, the WDR highlighted, for example, the benefits of combining data sources for poverty mapping, and thus better targeting of resources and services to the poor. Household surveys, which gather extensive data on living standards, consumption, income, and expenditures, are the basis for estimating national poverty rates in most countries. But those surveys are costly and infrequently performed. Recent advances are showing how combining the survey data with call detail records or, especially, with satellite imagery data can provide greater geographical resolution and timelier maps of poverty. Other examples from the report include repurposing commercial data and exploiting synergies with public intent data to monitor public health and improve predictions of disease spread in general, for streamlining service delivery, for improving road safety, and for allocating aid in disaster recovery.

More information about India’s efforts to incorporate private intent data and their analytics and to combine it with more traditional forms of data would be welcome in this paper. The Government’s envisioned role in the frameworks presented in the paper is almost entirely as a collector and disseminator of public data. In the short term, that is a sensible and important goal. But if the richest data on the Indian economy and the economic and social activities of the Indian
people are in the hands of the private sector, the Government will need the technological capabilities and human capital to become fuller analytical partners with the private sector over time.

At the end of the paper (in Section 8.2), there are brief suggestions about how the Indian statistical economic services could be modified to achieve some of these goals. An example from another country of a more comprehensive effort to improve data capabilities, especially government data capabilities, is the Data Science Campus in the UK’s Office of National Statistics (ONS). This is a unit within a national statistical office that is tasked explicitly with leveraging the latest advances in data science, and the synergies between public intent and private intent data sources to serve the public good. The campus works on data science projects for the UK Government and with international organizations in collaboration with partners from academia and the private sector. More information about whether similar efforts are underway or are being contemplated for India would be welcome.

Data Protection and Data Governance

Sharing public data more widely is the focus of this paper, and India’s considerable achievements in terms of government data collection are rightly lauded. These achievements and capabilities are also reflected in the World Bank Statistical Performance Indicators (SPIs), which were released in conjunction with the WDR 2021. The SPIs are used to assess the availability, quality, and usability of public intent data across 166 countries. India’s SPI score ranks within the second highest quintile in the sample, which is uncommonly high among low- and middle-income countries. Controlling for per capita income in a regression analysis, India ranks 14th globally in SPI. Perhaps this new data source could be used to buttress quantitatively some of the claims made in the paper.

Given these statistical capabilities, an open question is why India has not made more use of its public data. An answer put forth in the paper is that a change in mindset—viewing data as being owned by the Indian people, not the government, which should instead focus primarily on disseminating those data widely in a readily usable format—is needed. While that would be important, perhaps even crucial, in and of itself, that change may not be sufficient to unleash the data sharing and dissemination envisioned. The WDR 2021 argued that a variety of factors prevent countries, particularly low- and middle-income countries, from realizing greater value from both public and private intent data, including lack of resources, technical capacity, data governance arrangements, and the demand for data-informed decision-making. Based on the description in the paper, all those factors could be playing a role in India.

Greater emphasis could be placed on data governance, which WDR 2021 defined as being comprised of a set of building blocks to enable and deliver the
potential benefits of data, while safeguarding against harmful outcomes. These include data infrastructure policies and connectivity; the policies, laws, and regulations around data; related economic policies in terms of anti-trust, tax, and trade; and data governance institutions. A closer look at, in particular, the laws and regulations around data and the institutions of data governance could provide a better understanding of the bottlenecks in sharing and disseminating India’s public data. Two additional data sources released in conjunction with the WDR may be of use in this regard, namely the World Bank Global Data Regulation Survey, and the database of Digital Government/Gov Tech Systems and Services (DGSS).

The data regulation survey has questions about enablers of e-commerce transactions, and separate sections on the enablers of sharing and repurposing public intent and private intent data. It also provides information about safeguards with respect to personal data, non-personal data, cross-border data flows, and cybersecurity.

A stark pattern emerges from the responses to the Data Regulation Survey. Countries, especially low- and middle-income ones, score more highly on enabling data flows and e-commerce than on safeguarding and protecting data, and India is no exception. It scores just over 50 on a 100-point scale for enablers, but less than 40 on a 100-point scale for data safeguards. And the description in the paper also indicates that data protection is a major concern in India:

On the one hand, non-sensitive micro data is arbitrarily held from the public domain. On the other hand, individual-level sensitive data are often available on the public domain on a discretionary basis. In some cases, substantial, personally identifiable information is accessible on the public domain without any checks or safeguards, such as in electoral rolls and details about beneficiaries of programs such as MGNREGA.

It seems likely that these concerns will loom larger as more public data are shared, and if and when the government incorporates new private data sources in its analysis, decision-making, and dissemination.

The data regulation survey assumes that a good-practice regulatory environment, specifically with respect to sharing and enabling re-use of public sector data, includes foundational legislation on open data and access to information as well as digital identity verification and authentication; a formal data classification policy; adoption of syntactic and semantic interoperability across data sets; and user-friendly licensing arrangements. Countries have adopted about half of such good practices, ranging from less than 30 percent in lower-income countries to about two-thirds in high-income countries.

The discussion in the paper suggests that India is falling short on a number of these dimensions, especially those related to data classification, interoperability, and user-friendly licensing agreements. Information from the data regulation survey could enable the authors to benchmark India’s progress on these aspects of public data sharing relative to other countries in a more systematic way.
Finally, the paper could devote more effort to explaining whether the core institutions of data governance in India are lacking. For example, the comparison in Box 1 with the UK Data Service Secure Lab seems to suggest that there is no comparable data protection agency in India, but it would be good to know more about which institutions have the responsibility for formal data protection in India, and why it has been so lackluster. Also, is there a specialized unit within the Indian statistical economic service or elsewhere designed to ensure the interoperability and standardization of public data? And does it have any authority over other agencies to impose and enforce that interoperability and standardization?

Political Economy of Data Sharing

Governments around the world have mixed feelings about sharing data widely and well. It is costly, it requires expertise, it is likely to require institutional restructuring and/or creation of new government agencies, and demand for data-driven analysis may be low among government officials and policy-makers. And, because the potential re-uses of data and synergies across data types are impossible to forecast with any precision (as is argued in the paper), it is difficult to measure and demonstrate the value that will be created through these efforts. But also, and quite importantly in some contexts, governments are reluctant to release data that would open them up to greater scrutiny. Indeed, *WDR 2021* highlighted cases not only of governments hiding inconvenient data but of occasionally falsifying it.

Empirical analysis showed that two factors are strongly correlated with a better environment for public data production and dissemination as reflected in higher SPI scores: the political independence of the national statistical office and freedom of the press. Based on the description in the paper, it appears that India does well on both these dimensions, and so those analyses provide additional quantitative support for key points made by the authors.

Perhaps more importantly, this suggests that the failure to unlock the value of India’s public data through better dissemination is not driven by the lack of political openness but more likely by the absence of effective data governance arrangements and institutions. These patterns provide clues about where the country should focus its efforts if it wants to get the most value for its citizens from the data it collects.

Reference

Ashwini Deshpande
Ashoka University

Thank you to all the authors for a really interesting paper. It is a paper that I almost fully agree with, which makes the discussant’s job hard. Normally, as a discussant, one raises questions related to specific points of disagreement and identifies gaps in the paper, and these collectively end up as Discussant’s comments. Preparing comments for this paper was challenging because in terms of the main sentiment and the effort, I find myself in complete agreement with the authors. I would like to take this opportunity to congratulate the authors for setting up the Socioeconomic High-resolution Rural-Urban Geographic Platform for India (SHRUG), which researchers use widely. In fact, when we set up the Centre for Economic Data and Analysis (CEDA), the center that I am leading at Ashoka University, we had extensive discussions about the focus of our center. Since SHRUG was already in existence, we decided not to re-invent the wheel and therefore, CEDA occupies a complementary space.

I completely agree with the authors that publicly available data is tremendously useful for all the reasons that the paper outlines thoroughly. This argument could not have been made at a better time, as India, like the rest of the world is battling the COVID-19 pandemic. More than at any other time, it is now during the pandemic that all of us all across the world have realized the urgency of good, reliable data in real time, as it can literally save lives. In India, it is really the paucity of data in real time that is striking at this time. It is ironical that we are facing this data shortage in the age of Big Data and campaigns such as Digital India through which we leave footprints of our daily lives, as literally every action of ours gets stored somewhere as a data point. The irony is that just when data on all aspects of our lives could potentially be collected like never before, data availability for public use is very low.

India, as the paper rightly points out, has a very long and rich history of producing credible data. The Indian data collection apparatus and statistical systems are remarkable both for the country’s level of development and for how poor the country was when the statistical system was established. India has several national data collection agencies that have significant capacity to produce good quality data under challenging conditions. Unfortunately, in the last six to seven years, and particularly during the COVID-19 pandemic, what stands out is the absence of actionable data in real time.

One source of high-frequency data released in real time is that from the Centre for Monitoring Indian Economy (CMIE), which is privately collected data available for purchase. While the use of CMIE data is increasing, we should note that it is costly. This is the time when the need for free and official, transparent data to assess COVID-19 induced changes could not have been more pressing. For instance, the CMIE releases a new round of the Consumer Pyramids data every four months. This is nationally representative panel data, which enables us to
assess which exact indicators have changed and by what extent. However, the cost barrier is binding for several users who might have wanted to use the data. In the absence of reliable, official data, civil society actors and journalists are assembling data from disparate sources: from news reports, from crematoria, among other places, as if they are recreating the full picture by putting together pieces of a giant jigsaw puzzle.

There are initiatives like SHRUG and CEDA, which are engaged in efforts to promote sensible and scientific evidence-based research and dialogue. What we are doing at CEDA is using publicly available data that is freely available, like various rounds of the National Sample Survey, National Family and Health Survey, and decennial censuses. We are calculating summary statistics (averages, frequencies, and proportions), and creating a dashboard for users who may not want to or may not be willing to engage with complex unit-level data. Unit-level data are already easily available, and SHRUG, in a tremendous act of public service, has already done a lot of convergence across geographies and across time. In CEDA, we are making summary statistics available because typically when a member of the general public says, “I need data”, what they mean is that they want immediately usable numbers, which are easy to access. CEDA is also creating short data narratives to show how these numbers can be used to intelligently analyze economic developments.

To sum up, one issue is that for effective and efficient policy-making, it is extremely important that data are getting generated and disseminated in real time. The COVID-19 pandemic has highlighted the urgency of high-frequency indicators.

The other issue about data is quality, by that I mean: how meaningful is the information that the data reveals? One of the examples in the paper is the property real estate market, which Sam also mentioned in the presentation. Anybody who is familiar with the real estate market in India knows how it actually functions. If we were to get data on the prices at which properties register, it would be misleading. This is because there is a legal rate, which is called the circle rate, but this is not the price at which the transaction actually takes place. Therefore, even if the property registrar’s data were to be made publicly available, it would not actually capture the true value of the real estate market as far as the purchase of the property is concerned. The paper does not go into the question of quality of data, one example of which is the real estate market.

Let me give a few examples of data deficiencies, which relate both to availability and quality. Last year when the COVID-19 pandemic started, UN Women and other agencies pointed out that as the pandemic spread globally, as countries imposed lockdowns, the shadow pandemic of domestic violence followed, since women and children were locked in with their abusers. A colleague of mine and I decided to examine real-time trends in domestic violence in India. The only source of any data on this was from the National Commission for Women (NCW). But NCW is typically not the first port of call for women who are in
distress. Women typically first approach the police, or helplines, or shelters. In order to assess if the incidence of domestic violence (which in any case is under-reported) was increasing during lockdowns, we would have wanted data from these sources in real time. I tried to approach several State governments individually. Some governments shared some data and some governments refused. The police data comes to the National Crime Records Bureau after two years, but by then it would be too late for immediate action.

Another data-related issue that I am personally very interested in is women’s labor force participation (LFP). A strong and popular narrative argues that women are withdrawing from the labor force because of an increase in conservative social norms. That sounds plausible and believable. However, if we weigh this argument against the fact that the decline in women’s labor force participation, first of all, has happened over the last 15 years, actually even longer, and secondly, the bulk of the decline has been for rural women, and within rural women, for Adivasi or tribal women, then we need to think hard about whether the narrative of increasing conservative social norms as the main cause of the decline in women’s labor force participation rate is really valid or not. There is research (including mine) that argues why this narrative has to be questioned, but in order to present evidence on this question, one needs better data. One key issue is measurement of women’s work. In fact, NCAER is a good place to talk about this, because the India Human Development Survey (IHDS), which comes out of NCAER, and Sonalde Desai’s team have actually been engaged in the very important task of measuring women’s work correctly. Based on their work, we have proof that efforts to collect better data can yield results. However, in the LFP debate, there are other questions, such as is it the case that employers have lower demand for women’s work? Is it the case that there isn’t availability of jobs that women could do in rural areas? Is it all of the above things? Again, to gauge these questions, we need data in real time.

Let me give another example which highlights another dimension of the data problem. A few years back, I did some work in Maharashtra on the State Rural Livelihoods Mission (MSRLM). When we were doing the survey, we asked women, “Which Self Help Group (SHG) are you a member of?” They knew the name of that SHG, which we collected. When we came back to Delhi and analyzed the data, we realized that women were unable to say whether their SHG belongs to MSRLM or not (Maharashtra has a wide variety and a long history of SHGs). We assumed that we would easily be able to match the names of individual SHGs based on the MIS data of the program, which is computerized. But we were not able to. Even when data does get generated, some vital information somehow gets missed, or does not get recorded, and therefore, it is rendered unusable. For our project, one of the research questions was assessment of the difference between the program SHGs and other SHGs. Despite having names of individual SHGs, we could not analyze this question, because we could not determine which messages were program messages.
Why is data not available for long periods of time? What are the concerns? There might be concerns that if data becomes more transparent and easily available, it will rock the boat, or it will threaten effective governance, because people will be more aware of non-performance or lapses in functioning. I personally don’t think that’s true at all. A large number of well-informed citizens armed with data don’t overthrow governments. There was an amazing article in The New Yorker in 2017, which showed how facts don’t change our minds. We have been seeing that around many countries around the world. I would like to make the case for giving us (researchers and scientific personnel) more data. We might write a few papers using this data but this would never threaten effective governance. If anything, research can be useful to make policy more effective. The demand for data, we must acknowledge, is coming from those who genuinely care about India’s development and about India’s people. Forces that are antithetical to India’s interests don’t analyze data to plan their strategies.

When the scientific and research community (which, in the case of India, is large and vibrant) asks for data, it is because we are concerned about the people of India and believe that we can contribute insights into development challenges as well as suggest possible solutions. Data transparency would increase the mutual trust between the government and its people, and would improve governance, not hinder it. Finally, in the last eight years, more or less, we have not had any of the large surveys, for example, the NSS Consumer Expenditure Survey, and the Employment Unemployment Survey. The Annual Survey of Industries (ASI) was last done in 2013. These are vital chunks of data that we desperately need. India needs to move in the direction of making the surveys more, rather than less, frequent as well as open and democratize data. Given India’s impressive survey capability, we should use that resource for the benefit of India’s development.

General Discussion

The Chair, Suman Bery, led the discussion by highlighting the need for building an ecosystem for improving the quality and the dissemination of administrative data. He noted that government departments often place just a fraction of the data that they should in the public domain, and often not in a way that can be consumed by researchers. He posed the following critical questions: Why does a lot of individual well-intentioned activity stop short of adding up to more than the sum of its parts? What are the incentives offered within individual ministries to actually publicly share the entire available data? Why are the data shared only partially? Is it because there is no demand for these data? Is it a data governance issue, or is it, in a sense, a hint that too much data is a dangerous thing in the eyes of bureaucrats because it imposes an accountability on them that they may not be
comfortable with? What would it take for this issue to be taken seriously and who would be the node to lead such an initiative?

K.P. Krishnan, a former bureaucrat himself, offered his perspective on the subject. He pointed out that the answer to a lack of headway in mass data dissemination lies in the combination of questions put forward by Suman Bery. One, there is no incentive; two, very often there is no capability; and three, more data means greater accountability. And clearly, all three are reasons as to why the dissemination is never done in a manner whereby a researcher can actually use the data. While half the data are put in PDF formats, the other half are embedded in Excel spread sheets, implying that they are not disseminated in a manner that facilitates a researcher to actually use the data. Additionally, most administrative departments are seriously conflicted because the data that they need to put out is the data on which they will get funding for the forthcoming year, for which they will be evaluated. Hence, there are serious (dis)incentive issues here that need to be addressed.

When NCAER President, Nandan Nilekani, was the Chairman of the Unique Identification Authority of India (UIDAI), he had written a report on data dissemination standards for Government of India departments. K.P. Krishnan suggested that the issues of how to ensure that individual departments actually released the data in a periodicity that is predictable, in a manner that is compatible with the rest of the world, and using definitions that are aligned with the domain, were covered in the report. However, the report was never released, indicating the lack of interest at the bureaucratic and political levels to deal with the issue of sharing of government data. The primary government agency that can help in ensuring outcomes in this sphere is the Cabinet Secretariat.

Karthik Muralidharan discussed the path ahead for ensuring improvement in administrative data quality and availability, and whether solutions are more counter-productive at the Union level as compared to the State level. He averred that the problem with a lot of the data collection and data-type initiatives in the government is that even the more committed Secretaries and Ministers, who are interested in tackling the issue, do not have the time horizon needed to invest in data systems, and they would much rather just launch programs because they have a tenure of two years in the best of situations. The question they try to answer is thus, “What program am I launching?,” as opposed to, “How am I putting in place a system to collect data that may show up and have returns five years down the line?” He said that one might, however, find champions in specific States, and that NITI Aayog, with which the authors Sam Asher and Paul Novosad are engaging, could be one such a logical place to push some of this agenda. But even there, it would be prudent to work with specific sectors.

Surjit S. Bhalla commended the paper and endorsed the claim that data is the ultimate public good. He argued that dissemination of bad data is actually better for policy advice and for policy discussion than dissemination of good
data. There is, however, no argument for withholding any data. In India, the one data that has been withheld is the Consumption Survey of 2017–18. It should be disseminated because it showed an abominably low level of consumption among Indian households. Thus, the dissemination of that data would help us better understand the outcomes related to consumption.

The session video and all slide presentations for this IPF session are hyperlinked on the IPF Program available by scanning this QR code or going to https://www.ncaer.org/IPF2021/agenda.pdf