IMPACT Model and Extensions

MARK W. ROSEGRANT
ENVIRONMENT AND PRODUCTION TECHNOLOGY DIVISION
INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE, WASHINGTON, DC
EXTENSIONS OF THE IMPACT MODEL

- Increased modularity in model structure
- Water quality and other environmental indicators
 - Green and blue water footprints
 - Nitrogen and phosphorus loading
 - Carbon stocks
 - Species risk of extinction and endangerment
- Land use change
- Nutrition
- IMPACT-CGE linkage
- Open Sourcing
IMPACT 3 MODEL SYSTEM

1. Data estimation and management program
2. IMPACT 3 partial equilibrium multimarket global economic model
3. Linked modules/models
4. Simulation specification and execution program
5. Simulation output processing programs
IMPACT 3 SUITE OF MODELS

- Global multimarket model (core IMPACT)
 - Crop production, demand, international trade
- SPAM: Spatial Production Allocation Model
- Land-use model
- DSSAT Crop Models
- Malnutrition model
- Welfare module
- Water models
 - Hydrology
 - Water Basin Management
 - Water Stress on economy
- Sugar and oilseeds
 - Value chain: crops to processing activities
- Livestock/meat/dairy
- Links to GCM climate models

IMPACT Model and Extensions
The Future of Indian Agriculture: Policy Options for Competitive, Inclusive and Sustainable Growth
IMPACT Model and Extensions
The Future of Indian Agriculture: Policy Options for Competitive, Inclusive and Sustainable Growth
MODULARITY: INTERDISCIPLINARY WORK

- Modules can be discipline specific
 - May run on different time steps than the core model or other modules
 - Draw on disciplinary expertise, and do not require compromises to fit “inside” a model from another discipline. Can be validated at the discipline level.
 - E.g. water models linked to IMPACT
- How coordination is managed across modules and with the core model is crucial
DESIDERATA FOR MODULAR MODEL SYSTEMS

A “module” should be designed to:

- Read its own parameters;
- Initialize its own variables;
- Accept variables passed to it from other modules and the environment;
- Pass variables that are computed within the module to other modules or the main model;
- Own its set of state variables;
- Operate in “stand-alone” mode
MODULARITY: LINKING MODULES

- Modularity = “a la carte” model system
 - Use the models you need, turn off those you do not need
 - Separate models can be run independently
 - Modules can run on different time steps

- Standardize data transfer
 - Information Flows
 - Dynamic or Iterative interaction

- “Data driven” model specification
 - IMPACT model can be run at any level of aggregation without changing the model code
 - Change input data and sets only: user need not even see the GAMS code
MODULARITY: LINKING MODULES

Three ways to link modules:

1. **Exogenous**: Information flows in one direction
 - 1. Hydrology, DSSAT, GCMs, SPAM → IMPACT
 - 2. IMPACT → Welfare, nutrition modules

2. **Linked dynamically**: Two-way information flow between years
 - 1. Water stress on crops, *water quality*
 - 2. Land use change

3. **Endogenous**: Module equations are solved simultaneously
 - 1. Livestock, sugar processing, oilseeds/oils
 - 2. Land allocation to crops
WATER QUALITY MODELING SCHEMATIC

IMPACT Model and Extensions
The Future of Indian Agriculture: Policy Options for Competitive, Inclusive and Sustainable Growth
Water quality risk indices related to nitrogen pollution for major river basins of the world in the base period

Water quality risk indices related to nitrogen pollution for major river basins of the world in 2050 (under the CSIRO-medium scenario)

LAND USE CHANGE METHODOLOGY

Theoretical foundation: Random utility model

- Distinguishing feature: By imposing a reasonable assumption on the distribution of crop areas, the model can provide crucial insights in the evolution of the crop mix under sparse data environment

- Structure and specification

 Upper level
 Choice variable:
 - Remote-sensing land use/land cover
 Explanatory variables:
 - Transportation cost
 - Population density
 - Institutional variable
 - Climate
 - Topography
 - Soil

 Lower level
 Choice variable:
 - Crop areas at subnational level
 Explanatory variables:
 - Crop biophysical suitability
 - Crop price

IMPACT Model and Extensions
The Future of Indian Agriculture: Policy Options for Competitive, Inclusive and Sustainable Growth
APPLICATION: COUNTRY LEVEL MODELS

Econometric nested LUM

Satellite data
Ag census data
Ancillary data: Pop, road, institutional factors, crop suitability, topography, climate condition, soil property

Baseline LU (and LUC over time)

GCM scenario: e.g., precipitation and temperature
Macroecon scenario: e.g., pop growth

Parameter estimates

Policy scenarios: conservation practices LU planning, etc.

LUC under alternative scenarios

Impact on food security, environ & ecosystem, etc.

IMPACT Model and Extensions
The Future of Indian Agriculture: Policy Options for Competitive, Inclusive and Sustainable Growth
IMPACT AND NUTRITION ASSESSMENT: NEXT STEPS

- Incorporation of coefficients to provide estimates of micronutrient composition of each food commodity in IMPACT, and overall diet diversity
 - Approach:
 - IMPACT output is consumption of raw commodity
 - Estimate micronutrient composition as mediated through final uses of the product
 - Testing alternative data sets

- Disaggregation of demand and demand equations by income or wealth class.
 - Did prototype of this for a few countries with HarvestPlus
 - Data intensive, and complex dynamics of income changes by class over time
LINKING IMPACT AND CGE: CHARACTERISTICS OF THE TWO MODELS

<table>
<thead>
<tr>
<th>IMPACT (PE)</th>
<th>MIRAGE (CGE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed partial equilibrium model of agricultural sector with exogenous</td>
<td>Multi-sector general equilibrium model with endogenous labor and capital</td>
</tr>
<tr>
<td>capital growth</td>
<td></td>
</tr>
<tr>
<td>More disaggregated agricultural commodities (wheat, maize, rice, sorghum...</td>
<td>Groups of agricultural commodities (oilseeds, coarse grains)</td>
</tr>
<tr>
<td>to cassava)</td>
<td></td>
</tr>
<tr>
<td>Disaggregated spatial allocation of crop production at sub-national level</td>
<td>National representation for many countries based on GTAP data base</td>
</tr>
<tr>
<td>(324 units)</td>
<td></td>
</tr>
<tr>
<td>Details on physical use of land and water, trade wedges, with resulting</td>
<td>Details on characteristics of trade barriers and trade reform</td>
</tr>
<tr>
<td>trade</td>
<td></td>
</tr>
<tr>
<td>Iterative year-by-year demand and supply equilibration</td>
<td>Solution in five year blocks</td>
</tr>
</tbody>
</table>
DIFFERENT APPROACHES TO LINK MODELS

1. Sequential use of IMPACT results in MIRAGE for particular scenarios
2. Sequential use of MIRAGE results in IMPACT (national income and labor/fertilizer prices)
3. Add new sectors (labor) to IMPACT based on the MIRAGE model representation
4. Bring some features of IMPACT into MIRAGE
SOFT LINKING PE AND CGE

- Advantages of a simple sequential linkage
 - Better representation of agriculture and trade
 - Possibility to base CGE simulation of technology on a spatio-temporal disaggregation of productivity effects

- CGE modeling to focus on
 - Economy-wide impacts of the scenarios
 - Links between agricultural and non-agricultural sectors
 - General equilibrium welfare measures
Make IMPACT Open Source
(in planning stage)
WHY CONVERT GLOBAL AGRICULTURAL AND WATER MODELS TO OPEN SOURCE?

- Transparency will be critical to future model uses
 - Community that does global modeling of agricultural and natural resource futures has historically not shared its underlying code, with the exception of GTAP (https://www.gtap.agecon.purdue.edu)
 - Different models have reported dramatically different results with no way to understand why the results differ
 - Acceptable in the past when agriculture was relatively unimportant in global considerations
 - But with critical attention being paid to food security challenges, it will not be acceptable in the future
 - Independent observers can review details of the code - more credible results from any model outputs
 - Results will be utilized in more responsible ways in policy dialogue
WHY CONVERT GLOBAL AGRICULTURAL AND WATER MODELS TO OPEN SOURCE?

- Model improvements
 - In a set of models as complex as those in the global agricultural models
 - Ability to find and fix problems is directly related to the number of people
 - who have access to,
 - interest in, and
 - understanding of the code
 - Opening up access to the code - more problems will be found and fixed quickly
 - New users will want to add new functionality
 - One of the key advantages to open sourcing software
 - Should be a key feature of the implementation of open sourcing chosen
WHY CONVERT GLOBAL AGRICULTURAL AND WATER MODELS TO OPEN SOURCE?

• General movement to open source and free distribution
 • Growing pressure from our donors to make all data and models that generate those data freely available
 • For example, Gates Foundation’s data collection efforts (being undertaken under the LSMS auspices) must be made publicly available within a year of collection
 • These rules will likely be also adopted for modeling